Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Replacing serum in culture medium with albumin and insulin, transferrin and selenium is the key to successful bovine embryo development in individual culture

E. Wydooghe A D E , S. Heras A D , J. Dewulf A , S. Piepers A , E. Van den Abbeel B , P. De Sutter B , L. Vandaele C D and A. Van Soom A D
+ Author Affiliations
- Author Affiliations

A Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.

B Department of Reproductive Medicine, University Hospital, Ghent University, B-9000 Ghent, Belgium.

C Institute for Agricultural and Fisheries Research, Animal Sciences Unit, Scheldeweg 68, 9090 Melle Belgium.

D These authors contributed equally to this work.

E Corresponding author. Email: eline.wydooghe@ugent.be

Reproduction, Fertility and Development 26(5) 717-724 https://doi.org/10.1071/RD13043
Submitted: 9 February 2013  Accepted: 24 April 2013   Published: 28 May 2013

Abstract

Individual culture of bovine embryos is usually associated with low blastocyst development. However, during preliminary experiments in our laboratory we observed high blastocyst development after individual embryo culture in a serum-free culture system. We therefore hypothesised that serum has a negative effect on embryos cultured individually whereas embryos in groups can counteract this. First, we determined whether the timing of removal of serum (during maturation or culture) had an influence on individual embryo development. The results clearly showed that removal of serum during embryo culture was the main contributing factor since high blastocyst development was observed after individual culture in synthetic oviductal fluid supplemented with bovine serum albumin (BSA) and insulin, transferrin and selenium (ITS), independent of the maturation medium. Second, we investigated whether an individual factor of the ITS supplement was essential for individual embryo development. We demonstrated that repeatable high blastocyst percentages were due to the synergistic effect of ITS. Finally, we investigated if a group-culture effect can still be observed under serum-free conditions. Group culture generated blastocysts with higher total cell numbers and less apoptosis. These data show that individual culture in serum-free conditions leads to high blastocyst development, but group culture still improves blastocyst quality.

Additional keywords: autocrine factors, blastocyst quality, epidermal growth factor, ITS, in vitro embryo production, semi-defined medium.


References

Augustin, R., Pocar, P., Wrenzycki, C., Niemann, H., and Fischer, B. (2003). Mitogenic and anti-apoptotic activity of insulin on bovine embryos produced in vitro. Reproduction 126, 91–99.
Mitogenic and anti-apoptotic activity of insulin on bovine embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFCnurs%3D&md5=22cd22bbf53dfd07486da209c141aa6fCAS | 12814351PubMed |

Barnes, D., and Sato, G. (1980a). Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 102, 255–270.
Methods for growth of cultured cells in serum-free medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhslOrs70%3D&md5=f42533b86a43c6f1cf8484b63b76e308CAS | 6999941PubMed |

Barnes, D., and Sato, G. (1980b). Serum-free cell culture: a unifying approach. Cell 22, 649–655.
Serum-free cell culture: a unifying approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksFWnsA%3D%3D&md5=691f20a637b3a894dd25e80d164b64a6CAS | 7460009PubMed |

Bowles, C. M., and Lishman, A. W. (1998). Attempts to improve the yield of bovine blastocysts by incorporating insulin, selenium and transferrin in the in vitro system. South African Journal of Animal Science 28, 30–37.
| 1:CAS:528:DyaK1cXmvVSls74%3D&md5=549ad6d2801840df67e9ea8bf7dd5f8bCAS |

Buhi, W. C., Alvarez, I. M., and Kouba, A. J. (2000). Secreted proteins of the oviduct. Cells Tissues Organs 166, 165–179.
Secreted proteins of the oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVyru74%3D&md5=9faf49c3966e1f50e03d84cc1de617a3CAS | 10729726PubMed |

Carolan, C., Lonergan, P., Khatir, H., and Mermillod, P. (1996). In vitro production of bovine embryos using individual oocytes. Mol. Reprod. Dev. 45, 145–150.
In vitro production of bovine embryos using individual oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFGmtLg%3D&md5=71bdba70a5c23d5e7847fb86bebbc3ebCAS | 8914071PubMed |

Donnay, I., VanLangendonckt, A., Auquier, P., Grisart, B., Vansteenbrugge, A., Massip, A., and Dessy, F. (1997). Effects of co-culture and embryo number on the in vitro development of bovine embryos. Theriogenology 47, 1549–1561.
Effects of co-culture and embryo number on the in vitro development of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVynuw%3D%3D&md5=72de29318de209f89a8cf7f9d76c5290CAS | 16728097PubMed |

George, F., Daniaux, C., Genicot, G., Verhaeghe, B., Lambert, P., and Donnay, I. (2008). Set-up of a serum-free culture system for bovine embryos: embryo development and quality before and after transient transfer. Theriogenology 69, 612–623.
Set-up of a serum-free culture system for bovine embryos: embryo development and quality before and after transient transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKksbs%3D&md5=dbde96457aa2b05b671978b07821e5a8CAS | 18242668PubMed |

Goovaerts, I. G. F., Leroy, J. L. M. R., Van Soom, A., De Clercq, J. B. P., Andries, S., and Bols, P. E. J. (2009). Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology 71, 729–738.
Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M7kt1Grsg%3D%3D&md5=c14f3b073f89cc3ed5bff67fbb8b9e4fCAS |

Goovaerts, I. G. F., Leroy, J. L. M. R., Langbeen, A., Jorssen, E. P. A., Bosmans, E., and Bols, P. E. J. (2012). Unravelling the needs of singly in vitro-produced bovine embryos: from cumulus cell co-culture to semi-defined, oil-free culture conditions. Reprod. Fertil. Dev. 24, 1084–1092.
Unravelling the needs of singly in vitro-produced bovine embryos: from cumulus cell co-culture to semi-defined, oil-free culture conditions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38bktlGhtQ%3D%3D&md5=bb20e229ee8fb9b0ee29aded983353a9CAS |

Hagemann, L. J., Weilert, L. L., Beaumont, S. E., and Tervit, H. R. (1998). Development of bovine embryos in single in vitro production (sIVP) systems. Mol. Reprod. Dev. 51, 143–147.
Development of bovine embryos in single in vitro production (sIVP) systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvV2gs7Y%3D&md5=d37f1a94915033495eed009dfc138412CAS | 9740321PubMed |

Hansen, P. J. (2010). Medawar redux – an overview on the use of farm animal models to elucidate principles of reproductive immunology. Am. J. Reprod. Immunol. 64, 225–230.
Medawar redux – an overview on the use of farm animal models to elucidate principles of reproductive immunology.Crossref | GoogleScholarGoogle Scholar | 20678170PubMed |

Harvey, M. B., and Kaye, P. L. (1990). Insulin increases the cell number of the inner cell mass and stimulates morphological development of mouse blastocysts in vitro. Development 110, 963–967.
| 1:CAS:528:DyaK3MXktVWgs7w%3D&md5=791683584b2505e4f40891b00e402263CAS | 2088732PubMed |

Kaaekuahiwi, M. A., and Menino, A. R. (1990). Relationship between plasminogen activator production and bovine embryo development in vitro. J. Anim. Sci. 68, 2009–2014.
| 1:CAS:528:DyaK3cXlt12ktbk%3D&md5=b6e6052be0fd0fcf880c5b6533405cd7CAS | 2384391PubMed |

Kane, M. T., Morgan, P. M., and Coonan, C. (1997). Peptide growth factors and preimplantation development. Hum. Reprod. Update 3, 137–157.
Peptide growth factors and preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVWmt70%3D&md5=7147d2b8716165ea3140186d13d69563CAS | 9286738PubMed |

Krisher, R. L., Lane, M., and Bavister, B. D. (1999). Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol. Reprod. 60, 1345–1352.
Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVejtr4%3D&md5=060d84a929c5ef4550dd885d9aef5455CAS | 10330091PubMed |

Lazzari, G., Wrenzycki, C., Herrmann, D., Duchi, R., Kruip, T., Niemann, H., and Galli, C. (2002). Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol. Reprod. 67, 767–775.
Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsV2js7Y%3D&md5=5f6f0fad6db3e4374cc9ff92580670a7CAS | 12193383PubMed |

Lonergan, P. (2007). State-of-the-art embryo technologies in cattle. Soc. Reprod. Fertil. Suppl. 64, 315–325.
| 1:STN:280:DC%2BD2s3otlKiuw%3D%3D&md5=ff6c6044884081d4df6436707fa1f38dCAS | 17491156PubMed |

Lonergan, P., Carolan, C., VanLangendonckt, A., Donnay, I., Khatir, H., and Mermillod, P. (1996). Role of epidermal growth factor in bovine oocyte maturation and preimplantation embryo development in vitro. Biol. Reprod. 54, 1420–1429.
Role of epidermal growth factor in bovine oocyte maturation and preimplantation embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtV2nsLo%3D&md5=a606df917d8fc8cc2d4035e07e713dd0CAS | 8724373PubMed |

Menino, A. R., and Williams, J. S. (1987). Activation of plasminogen by the early bovine embryo. Biol. Reprod. 36, 1289–1295.
Activation of plasminogen by the early bovine embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFKntLs%3D&md5=ce624d5bbba1bd460044ee860a27f039CAS | 2956997PubMed |

Nasr-Esfahani, M. H., and Johnson, M. H. (1992). How does transferrin overcome the in vitro block to development of the mouse preimplantation embryo? J. Reprod. Fertil. 96, 41–48.
How does transferrin overcome the in vitro block to development of the mouse preimplantation embryo?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVCm&md5=fad566084ff7cdcd430004c8d2d1d57bCAS | 1432973PubMed |

Santos, A., Augustin, R., Lazzari, G., Galli, C., Sreenan, J. M., and Fischer, B. (2000). The insulin-dependent glucose transporter isoform 4 is expressed in bovine blastocysts. Biochem. Biophys. Res. Commun. 271, 753–760.
The insulin-dependent glucose transporter isoform 4 is expressed in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Sjs74%3D&md5=e1d58d507f6bd49c01c781632fb70cdfCAS |

O’Doherty, E. M., Wade, M. G., Hill, J. L., and Boland, M. P. (1997). Effects of culturing bovine oocytes either singly or in groups on development to blastocysts. Theriogenology 48, 161–169.
Effects of culturing bovine oocytes either singly or in groups on development to blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVyltQ%3D%3D&md5=0b5fcc289e72040fe5094a77850220a0CAS | 16728116PubMed |

O’Neill, C. (1997). Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol. Reprod. 56, 229–237.
Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7ls1Wqtg%3D%3D&md5=2fa3e6d87cb5ce0fe33d2c9318b18d10CAS | 9002654PubMed |

O’Neill, C. (2008). The potential roles for embryotrophic ligands in preimplantation embryo development. Hum. Reprod. Update 14, 275–288.
The potential roles for embryotrophic ligands in preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFOqtbw%3D&md5=9760bd28fe35aa89442a0e656bef9774CAS | 18281694PubMed |

O’Neill, C., Li, Y., and Jin, X. L. (2012). Survival signalling in the preimplantation embryo. Theriogenology 77, 773–784.
Survival signalling in the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGhsLs%3D&md5=038cc76e8621d851fd41778590c92167CAS | 22325248PubMed |

Otsuki, J., Nagai, Y., Matsuyama, Y., Terada, T., and Era, S. (2013). The redox state of recombinant human serum albumin and its optimal concentration for mouse embryo culture. Systems Biology in Reproductive Medicine 59, 48–52.
The redox state of recombinant human serum albumin and its optimal concentration for mouse embryo culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Cktbs%3D&md5=9d8d6392db95fad95d74e1c9f09148b5CAS | 23050831PubMed |

Palasz, A. T., and Thundathil, J. (1998). The effect of volume of culture medium and embryo density on in vitro development of bovine embryos. Theriogenology 49, 212.
The effect of volume of culture medium and embryo density on in vitro development of bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Paria, B. C., and Dey, S. K. (1990). Preimplantation embryo development in vitro – cooperative interactions among embryos and role of growth factors. Proc. Natl. Acad. Sci. USA 87, 4756–4760.
Preimplantation embryo development in vitro – cooperative interactions among embryos and role of growth factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkslWrsbw%3D&md5=6b6e399f674f1615a7c568d8a7ea8900CAS | 2352946PubMed |

Pinyopummintr, T., and Bavister, B. D. (1991). In vitro-matured/in vitro-fertilized bovine oocytes can develop into morulae/blastocysts in chemically-defined, protein-free media. Biol. Reprod. 45, 736–742.
In vitro-matured/in vitro-fertilized bovine oocytes can develop into morulae/blastocysts in chemically-defined, protein-free media.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2Fps1Ghug%3D%3D&md5=33d9b978336e35d49cdc514d64650d58CAS | 1756211PubMed |

Rizos, D., Gutierrez-Adan, A., Perez-Garnelo, S., De La Fuente, J., Boland, M. P., and Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance and messenger RNA expression. Biol. Reprod. 68, 236–243.
Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance and messenger RNA expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWj&md5=22a7b828b8425d4db390bd216ba6da79CAS | 12493719PubMed |

Scotchie, J. G., Fritz, M. A., Mocanu, M., Lessey, B. A., and Young, S. L. (2009). Proteomic analysis of the luteal endometrial secretome. Reprod. Sci. 16, 883–893.
Proteomic analysis of the luteal endometrial secretome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFagu7fK&md5=3987d54f7fcc47168157bf55d1e3f525CAS | 19494364PubMed |

Shamsuddin, M., Larsson, B., and Rodriguezmartinez, H. (1993). Culture of bovine IVM/IVF embryos up to blastocyst stage in defined medium using insulin, transferrin and selenium or growth factors. Reprod. Domest. Anim. 28, 209–210.
Culture of bovine IVM/IVF embryos up to blastocyst stage in defined medium using insulin, transferrin and selenium or growth factors.Crossref | GoogleScholarGoogle Scholar |

Vandaele, L., Mateusen, B., Maes, D., de Kruif, A., and Van Soom, A. (2006). Is apoptosis in bovine in vitro-produced embryos related to early developmental kinetics and in vivo bull fertility? Theriogenology 65, 1691–1703.
Is apoptosis in bovine in vitro-produced embryos related to early developmental kinetics and in vivo bull fertility?Crossref | GoogleScholarGoogle Scholar | 16280159PubMed |

Vandaele, L., Wydooghe, E., and Van Soom, A. (2010) Individual serum-free culture of bovine embryos is producing high blastocyst rates. In ‘Proceedings of COST Gemini, Oct 2010, Souston, France’. (Eds A. Fazeli and P. Chavatte-Palmer) p. 33. (Gemini Cost Action FA0702.)

Van Soom, A., Wydooghe, E., Heras, S., and Vandaele, L. (2011). Alternative models for the study of embryo–maternal cross-talk and signalling molecules from fertilisation to implantation Foreword. Reprod. Fertil. Dev. 23, iii–v.
Alternative models for the study of embryo–maternal cross-talk and signalling molecules from fertilisation to implantation Foreword.Crossref | GoogleScholarGoogle Scholar | 22127009PubMed |

Watson, A. J., Hogan, A., Hahnel, A., Wiemer, K. E., and Schultz, G. A. (1992). Expression of growth-factor ligand and receptor genes in the preimplantation embryo. Mol. Reprod. Dev. 31, 87–95.
Expression of growth-factor ligand and receptor genes in the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVymur8%3D&md5=0e933d128221fc503955219427766c98CAS | 1318055PubMed |

Wydooghe, E., Vandaele, L., Beek, J., Favoreel, H., Heindryckx, B., De Sutter, P., and Van Soom, A. (2011). Differential apoptotic staining of mammalian blastocysts based on double-immunofluorescent CDX2 and active caspase-3 staining. Anal. Biochem. 416, 228–230.
Differential apoptotic staining of mammalian blastocysts based on double-immunofluorescent CDX2 and active caspase-3 staining.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVaku7o%3D&md5=6f031102c845619b46d1108db9c71934CAS | 21684250PubMed |