Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

MicroRNA-regulated molecular mechanism underlying bovine subclinical endometritis

D. Hailemariam A , S. Ibrahim A , M. Hoelker A , M. Drillich B , W. Heuwieser C , C. Looft A , M. U. Cinar A , E. Tholen A , K. Schellander A and D. Tesfaye A D
+ Author Affiliations
- Author Affiliations

A Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany.

B University of Veterinary Medicine Vienna, Herd Management in Ruminants, Veterinärplatz 1, A-1210 Vienna, Austria.

C Clinic for Reproduction, Section of Production Medicine and Quality Management, Free University of Berlin, Königsweg 63, 14163 Berlin, Germany.

D Corresponding author. Email: dtes@itw.uni-bonn.de

Reproduction, Fertility and Development 26(6) 898-913 https://doi.org/10.1071/RD13027
Submitted: 30 January 2013  Accepted: 11 June 2013   Published: 29 July 2013

Abstract

An impaired uterine environment triggered by the incidence of subclinical endometritis often compromises fertility in the bovine. The uterus is a dynamic organ with tight regulation of specific genes at the transcriptional and translational levels. Herein, we hypothesised that subclinical endometritis alters the expression of uterine microRNAs (miRNAs), which may result in the dysregulation of corresponding target genes and biological pathways. To test this hypothesis, we used a genome-wide RT2 (Exiqon, Vedbaek, Denmark) miRNA PCR array consisting of 354 miRNA primers and analysed miRNA expression in uterine cytobrush samples taken from cows with and without subclinical endometritis. The results revealed aberrant expression of 23 miRNAs in cows with subclinical endometritis compared with healthy cows. Furthermore, we designed an in vitro endometrial cell culture model challenged by lipopolysaccharide (LPS) to validate the differential regulation of miRNAs in cytobrush samples. Interestingly, we observed similar expression miRNA patterns in cytobrush samples taken from cows with or without subclinical endometritis and in vitro cultured endometrial cells challenged by LPS. To trace signalling pathways and biological functions potentially controlled by the aberrantly expressed miRNAs, we filtered high-ranking target genes from miRBase and analysed them using ingenuity pathway analysis. The gene networks, canonical pathways and biological functions strikingly converged to signalling pathways that mediate inflammatory responses, cellular proliferation, cell movement, the cell cycle and apoptosis in the bovine endometrium. In addition, expression analysis of key genes from the gene networks confirmed their presence and the potential regulation of these genes by uterine miRNAs. Furthermore, luciferase assay data substantiated the primary information from bioinformatic prediction that generated potential target genes for the dysregulated miRNAs in subclinical endometritis. Together, these data suggest the potential regulatory role of uterine miRNAs in the development and progression of bovine subclinical endometritis.

Additional keywords: gene expression, molecular pathway.


References

Achache, H., and Revel, A. (2006). Endometrial receptivity markers, the journey to successful embryo implantation. Hum. Reprod. Update 12, 731–746.
Endometrial receptivity markers, the journey to successful embryo implantation.Crossref | GoogleScholarGoogle Scholar | 16982667PubMed |

Agrawal, R., Tran, U., and Wessely, O. (2009). The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 136, 3927–3936.
The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislSltA%3D%3D&md5=d7ef873bd1329ac9b1e21948ddece11cCAS | 19906860PubMed |

Allhorn, S., Boing, C., Koch, A. A., Kimmig, R., and Gashaw, I. (2008). TLR3 and TLR4 expression in healthy and diseased human endometrium. Reprod. Biol. Endocrinol. 6, 40.
TLR3 and TLR4 expression in healthy and diseased human endometrium.Crossref | GoogleScholarGoogle Scholar | 18775079PubMed |

Baldwin, A. S. (2001). The transcription factor NF-κB and human disease. J. Clin. Invest. 107, 3–6.
The transcription factor NF-κB and human disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVOhsQ%3D%3D&md5=386f84938407941fcd408405f0ed8905CAS | 11134170PubMed |

Barański, W., Podhalicz-Dziegielewska, M., Zdunczyk, S., and Janowski, T. (2012). The diagnosis and prevalence of subclinical endometritis in cows evaluated by different cytologic thresholds. Theriogenology 78, 1939–1947.
The diagnosis and prevalence of subclinical endometritis in cows evaluated by different cytologic thresholds.Crossref | GoogleScholarGoogle Scholar | 23110950PubMed |

Barnes, P. J., and Karin, M. (1997). Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066–1071.
Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1SrsLw%3D&md5=0206bcb0f693b6843dcb5fc57d3bdd90CAS | 9091804PubMed |

Baskerville, S., and Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247.
Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVCjt7o%3D&md5=297619c01cba0bf4b7739a9e366f66d2CAS | 15701730PubMed |

Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y., and Bentwich, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766–770.
Identification of hundreds of conserved and nonconserved human microRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslWhs7c%3D&md5=64418456691ef13a450f422072cbc1d1CAS | 15965474PubMed |

Bigsby, R. M., and Cunha, G. R. (1986). Estrogen stimulation of deoxyribonucleic acid synthesis in uterine epithelial cells which lack estrogen receptors. Endocrinology 119, 390–396.
Estrogen stimulation of deoxyribonucleic acid synthesis in uterine epithelial cells which lack estrogen receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksFCrs7c%3D&md5=1a78c7cff47e272a47e2e798b77b4073CAS | 3720669PubMed |

Brennecke, J., Stark, A., Russell, R. B., and Cohen, S. M. (2005). Principles of microRNA–target recognition. PLoS Biol. 3, e85.
Principles of microRNA–target recognition.Crossref | GoogleScholarGoogle Scholar | 15723116PubMed |

Buford, W. I., Ahmad, N., Schrick, F. N., Butcher, R. L., Lewis, P. E., and Inskeep, E. K. (1996). Embryotoxicity of a regressing corpus luteum in beef cows supplemented with progestogen. Biol. Reprod. 54, 531–537.
Embryotoxicity of a regressing corpus luteum in beef cows supplemented with progestogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFCjt74%3D&md5=8a6f33b97a75f3cd3bb0dc2173ba3116CAS | 8835373PubMed |

Chakrabarty, A., Tranguch, S., Daikoku, T., Jensen, K., Furneaux, H., and Dey, S. K. (2007). MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc. Natl Acad. Sci. USA 104, 15 144–15 149.
MicroRNA regulation of cyclooxygenase-2 during embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2jur%2FN&md5=39aacd671a823472f2bd2000fd79b590CAS |

Chen, F., Castranova, V., Shi, X., and Demers, L. M. (1999). New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin. Chem. 45, 7–17.
| 1:CAS:528:DyaK1MXlt1yksA%3D%3D&md5=870e7f7295e6c293d2f268182b0d4112CAS | 9895331PubMed |

Das, S. K. (2009). Cell cycle regulatory control for uterine stromal cell decidualization in implantation. Reproduction 137, 889–899.
Cell cycle regulatory control for uterine stromal cell decidualization in implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVKgsbo%3D&md5=a4784c31d7a06320dee8db51a4ad8bbaCAS | 19307426PubMed |

Davidson, J. A., Tiemann, U., Betts, J. G., and Hansen, P. J. (1995). DNA synthesis and prostaglandin secretion by bovine endometrial cells as regulated by interleukin-1. Reprod. Fertil. Dev. 7, 1037–1043.
DNA synthesis and prostaglandin secretion by bovine endometrial cells as regulated by interleukin-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVyhtrY%3D&md5=39342205643001b0db49e818f797daa8CAS | 8848568PubMed |

Didiano, D., and Hobert, O. (2006). Perfect seed pairing is not a generally reliable predictor for miRNA–target interactions. Nat. Struct. Mol. Biol. 13, 849–851.
Perfect seed pairing is not a generally reliable predictor for miRNA–target interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFWiur4%3D&md5=5f5bda2f471ffbdc0747e1b909ed39f5CAS | 16921378PubMed |

Fischer-Tenhagen, C., von Krueger, X., and Heuwieser, W. (2012). Short communication: evaluation of vaginal discharge following treatment with a progesterone insert. J. Dairy Sci. 95, 4447–4451.
Short communication: evaluation of vaginal discharge following treatment with a progesterone insert.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOlt73F&md5=b427d670d922fd2c69b2c5dde52dd0a2CAS | 22818458PubMed |

Fitch, M. J., Campagnolo, L., Kuhnert, F., and Stuhlmann, H. (2004). Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev. Dyn. 230, 316–324.
Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFymtL4%3D&md5=198fe624c343236d96709076263b9623CAS | 15162510PubMed |

Fortier, M. A., Guilbault, L. A., and Grasso, F. (1988). Specific properties of epithelial and stromal cells from the endometrium of cows. J. Reprod. Fertil. 83, 239–248.
Specific properties of epithelial and stromal cells from the endometrium of cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksV2jurY%3D&md5=b85d7557e01f028db29878a37b74b49cCAS | 3165129PubMed |

Gabler, C., Drillich, M., Fischer, C., Holder, C., Heuwieser, W., and Einspanier, R. (2009). Endometrial expression of selected transcripts involved in prostaglandin synthesis in cows with endometritis. Theriogenology 71, 993–1004.
Endometrial expression of selected transcripts involved in prostaglandin synthesis in cows with endometritis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVWltb4%3D&md5=a3b70f40d099814d4e18fac701671999CAS | 19162311PubMed |

Gabler, C., Fischer, C., Drillich, M., Einspanier, R., and Heuwieser, W. (2010). Time-dependent mRNA expression of selected pro-inflammatory factors in the endometrium of primiparous cows postpartum. Reprod. Biol. Endocrinol. 8, 152.
Time-dependent mRNA expression of selected pro-inflammatory factors in the endometrium of primiparous cows postpartum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtlehtw%3D%3D&md5=eae52591b8e3206571b458f34031c089CAS | 21176181PubMed |

Germeyer, A., von Wolff, M., Jauckus, J., Strowitzki, T., Sharma, T., and Grazul-Bilska, A. T. (2010). Changes in cell proliferation, but not in vascularisation are characteristic for human endometrium in different reproductive failures: a pilot study. Reprod. Biol. Endocrinol. 8, 67.
Changes in cell proliferation, but not in vascularisation are characteristic for human endometrium in different reproductive failures: a pilot study.Crossref | GoogleScholarGoogle Scholar | 20565916PubMed |

Gilbert, R. O., Shin, S. T., Guard, C. L., Erb, H. N., and Frajblat, M. (2005). Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology 64, 1879–1888.
Prevalence of endometritis and its effects on reproductive performance of dairy cows.Crossref | GoogleScholarGoogle Scholar | 15961149PubMed |

Herath, S., Fischer, D. P., Werling, D., Williams, E. J., Lilly, S. T., Dobson, H., Bryant, C. E., and Sheldon, I. M. (2006). Expression and function of Toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology 147, 562–570.
Expression and function of Toll-like receptor 4 in the endometrial cells of the uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFKq&md5=f6e1aef400694b9fe49536639ba79d43CAS | 16223858PubMed |

Herath, S., Williams, E. J., Lilly, S. T., Gilbert, R. O., Dobson, H., Bryant, C. E., and Sheldon, I. M. (2007). Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 134, 683–693.
Ovarian follicular cells have innate immune capabilities that modulate their endocrine function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVCitA%3D%3D&md5=5e8751e1e5ee18d812e968dfe209a158CAS | 17965259PubMed |

Herath, S., Lilly, S. T., Santos, N. R., Gilbert, R. O., Goetze, L., Bryant, C. E., White, J. O., Cronin, J., and Sheldon, I. M. (2009b). Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility. Reprod. Biol. Endocrinol. 7, 55.
Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility.Crossref | GoogleScholarGoogle Scholar | 19476661PubMed |

Hernández-Ochoa, I., Karman, B. N., and Flaws, J. A. (2009). The role of the aryl hydrocarbon receptor in the female reproductive system. Biochem. Pharmacol. 77, 547–559.
The role of the aryl hydrocarbon receptor in the female reproductive system.Crossref | GoogleScholarGoogle Scholar | 18977336PubMed |

Hon, L. S., and Zhang, Z. (2007). The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol. 8, R166.
The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression.Crossref | GoogleScholarGoogle Scholar | 17697356PubMed |

Horcajadas, J. A., Pellicer, A., and Simon, C. (2007). Wide genomic analysis of human endometrial receptivity: new times, new opportunities. Hum. Reprod. Update 13, 77–86.
Wide genomic analysis of human endometrial receptivity: new times, new opportunities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChtLfI&md5=1463bce6f8ec95bcccff3aedcbb260a2CAS | 16960016PubMed |

Ireland, J. J., Murphee, R. L., and Coulson, P. B. (1980). Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 63, 155–160.
Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7ot1yjsg%3D%3D&md5=c3dab2db64a5923926ba9f54a23d6e0aCAS | 7372895PubMed |

Kasimanickam, R., Duffield, T. F., Foster, R. A., Gartley, C. J., Leslie, K. E., Walton, J. S., and Johnson, W. H. (2005). A comparison of the cytobrush and uterine lavage techniques to evaluate endometrial cytology in clinically normal postpartum dairy cows. Can. Vet. J. 46, 255–259.
| 15884649PubMed |

Kim, J. J., and Fortier, M. A. (1995). Cell type specificity and protein kinase C dependency on the stimulation of prostaglandin E2 and prostaglandin F2 alpha production by oxytocin and platelet-activating factor in bovine endometrial cells. J. Reprod. Fertil. 103, 239–247.
Cell type specificity and protein kinase C dependency on the stimulation of prostaglandin E2 and prostaglandin F2 alpha production by oxytocin and platelet-activating factor in bovine endometrial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvV2rt7c%3D&md5=c563f46a9e325a3a0712448fe4c4deb6CAS | 7616496PubMed |

Kim, V. N., and Nam, J. W. (2006). Genomics of microRNA. Trends Genet. 22, 165–173.
Genomics of microRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVWitLw%3D&md5=c858d8837b1e0892533d7eaacaa6a3fcCAS | 16446010PubMed |

Knutti, B., Kupfer, U., and Busato, A. (2000). Reproductive efficiency of cows with endometritis after treatment with intrauterine infusions or prostaglandin injections, or no treatment. J. Vet. Med. A Physiol. Pathol. Clin. Med. 47, 609–615.
Reproductive efficiency of cows with endometritis after treatment with intrauterine infusions or prostaglandin injections, or no treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtF2ntg%3D%3D&md5=2a6d55cfad41ada42155099308f7feb0CAS | 11199209PubMed |

Kurita, T., Young, P., Brody, J. R., Lydon, J. P., O’Malley, B. W., and Cunha, G. R. (1998). Stromal progesterone receptors mediate the inhibitory effects of progesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acid synthesis. Endocrinology 139, 4708–4713.
Stromal progesterone receptors mediate the inhibitory effects of progesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acid synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFWltbk%3D&md5=fe8896eaa1e400ca9c15152678e27bfcCAS | 9794483PubMed |

Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.
Identification of novel genes coding for small expressed RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVChtb8%3D&md5=5e41f055c5f8d52ec31b588b0c250eebCAS | 11679670PubMed |

LeBlanc, S. J., Duffield, T. F., Leslie, K. E., Bateman, K. G., Keefe, G. P., Walton, J. S., and Johnson, W. H. (2002). Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J. Dairy Sci. 85, 2223–2236.
Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2ns70%3D&md5=3b13be678e98f979198f97c056b79fa2CAS | 12362455PubMed |

Lebovic, D. I., Baldocchi, R. A., Mueller, M. D., and Taylor, R. N. (2002). Altered expression of a cell-cycle suppressor gene, Tob-1, in endometriotic cells by cDNA array analyses. Fertil. Steril. 78, 849–854.
Altered expression of a cell-cycle suppressor gene, Tob-1, in endometriotic cells by cDNA array analyses.Crossref | GoogleScholarGoogle Scholar | 12372467PubMed |

Lee, J., Oh, J., Choi, E., Park, I., Han, C., Kim do, H., Choi, B. C., Kim, J. W., and Cho, C. (2007). Differentially expressed genes implicated in unexplained recurrent spontaneous abortion. Int. J. Biochem. Cell Biol. 39, 2265–2277.
Differentially expressed genes implicated in unexplained recurrent spontaneous abortion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWgsL3J&md5=049f422baa8b6282eb76cabd8307fcc2CAS | 17681868PubMed |

Li, R. W., and Capuco, A. V. (2008). Canonical pathways and networks regulated by estrogen in the bovine mammary gland. Funct. Integr. Genomics 8, 55–68.
Canonical pathways and networks regulated by estrogen in the bovine mammary gland.Crossref | GoogleScholarGoogle Scholar | 17668254PubMed |

Makker, A., and Singh, M. M. (2006). Endometrial receptivity: clinical assessment in relation to fertility, infertility, and antifertility. Med. Res. Rev. 26, 699–746.
Endometrial receptivity: clinical assessment in relation to fertility, infertility, and antifertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12qsrnK&md5=332c9bb8d5a9c8147590cbe6a257ea85CAS | 16710862PubMed |

Ohlsson Teague, E. M., Van der Hoek, K. H., Van der Hoek, M. B., Perry, N., Wagaarachchi, P., Robertson, S. A., Print, C. G., and Hull, L. M. (2009). MicroRNA-regulated pathways associated with endometriosis. Mol. Endocrinol. 23, 265–275.
MicroRNA-regulated pathways associated with endometriosis.Crossref | GoogleScholarGoogle Scholar | 19074548PubMed |

Pan, Q., and Chegini, N. (2008). MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin. Reprod. Med. 26, 479–493.
MicroRNA signature and regulatory functions in the endometrium during normal and disease states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVemtrnL&md5=ff520b81d1f8ea972524501b656332a9CAS | 18951330PubMed |

Parker, L. H., Schmidt, M., Jin, S. W., Gray, A. M., Beis, D., Pham, T., Frantz, G., Palmieri, S., Hillan, K., Stainier, D. Y., De Sauvage, F. J., and Ye, W. (2004). The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428, 754–758.
The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtV2mtrk%3D&md5=126aee32a46fca1a2bb78b9257707a84CAS | 15085134PubMed |

Raga, F., Bonilla-Musoles, F., Casan, E. M., Klein, O., and Bonilla, F. (1999). Assessment of endometrial volume by three-dimensional ultrasound prior to embryo transfer: clues to endometrial receptivity. Hum. Reprod. 14, 2851–2854.
Assessment of endometrial volume by three-dimensional ultrasound prior to embryo transfer: clues to endometrial receptivity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FhvVahtQ%3D%3D&md5=84535fa3427261d42108d7781d537849CAS | 10548635PubMed |

Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L., and Bradley, A. (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910.
Identification of mammalian microRNA host genes and transcription units.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotl2hu7w%3D&md5=1cb9d98689b16b07e88bff11a325a6bcCAS | 15364901PubMed |

Sheldon, I. M., Lewis, G. S., LeBlanc, S., and Gilbert, R. O. (2006). Defining postpartum uterine disease in cattle. Theriogenology 65, 1516–1530.
Defining postpartum uterine disease in cattle.Crossref | GoogleScholarGoogle Scholar | 16226305PubMed |

Sheldon, I. M., Cronin, J., Goetze, L., Donofrio, G., and Schuberth, H. J. (2009). Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod. 81, 1025–1032.
Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lt7vP&md5=1eb97bfdce6227dfbb27d396ccc1f21eCAS | 19439727PubMed |

Skarzynski, D. J., Miyamoto, Y., and Okuda, K. (2000). Production of prostaglandin F(2alpha) by cultured bovine endometrial cells in response to tumor necrosis factor alpha: cell type specificity and intracellular mechanisms. Biol. Reprod. 62, 1116–1120.
Production of prostaglandin F(2alpha) by cultured bovine endometrial cells in response to tumor necrosis factor alpha: cell type specificity and intracellular mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htrw%3D&md5=5976910ddd23efd1b65561d3ab073df1CAS | 10775156PubMed |

Soto, P., Natzke, R. P., and Hansen, P. J. (2003). Actions of tumor necrosis factor-alpha on oocyte maturation and embryonic development in cattle. Am. J. Reprod. Immunol. 50, 380–388.
Actions of tumor necrosis factor-alpha on oocyte maturation and embryonic development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2FkvFOmsg%3D%3D&md5=c98c42362fb96defb2a5a29ab121277fCAS | 14750697PubMed |

Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K., and Slack, F. J. (2004). The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev. 18, 132–137.
The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSkurw%3D&md5=58e3827741183fa0dfb5e63df06db59cCAS | 14729570PubMed |

Wang, Y., and Lee, C. G. (2009). MicroRNA and cancer: focus on apoptosis. J. Cell. Mol. Med. 13, 12–23.
MicroRNA and cancer: focus on apoptosis.Crossref | GoogleScholarGoogle Scholar | 19175697PubMed |

Yekta, S., Shih, I. H., and Bartel, D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596.
MicroRNA-directed cleavage of HOXB8 mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Crsr0%3D&md5=fe0eb915a9a4c2799ddeac7e0a28e0ccCAS | 15105502PubMed |