Immunolocalisation and oestrogen regulation of small proline-rich protein 2a protein in the mouse uterus
Hyang-Ah Lee A H , Hye-Ryun Kim B H , Young Jin Lee C , Seung-Joon Lee D , Woo Jin Kim D , Seon-Sook Han D , Se-Ran Yang E G , Heung-Myong Woo F G , Sunghun Na A , Haengseok Song B I and Seok-Ho Hong D G IA Department of Obstertics and Gynecology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
B Department of Biomedical Science, CHA University, Seoul 135-081, South Korea.
C Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
D Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
E Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
F College of Veterinary Medicine, Kangwon National Univeristy, Chuncheon 200-701, South Korea.
G Stem Cell Institute, Kangwon National University, Chuncheon 200-701, South Korea.
H These authors equally contributed to this work.
I Corresponding authors. Emails: hssong@cha.ac.kr; shhong@kangwon.ac.kr
Reproduction, Fertility and Development 26(5) 682-689 https://doi.org/10.1071/RD12408
Submitted: 24 December 2012 Accepted: 21 April 2013 Published: 5 June 2013
Abstract
Small proline-rich protein 2a (Sprr2a) is one of the structural components of the cornified keratinocyte cell envelope that contributes to form a protective barrier in the skin against dehydration and environmental stress. Interestingly, Sprr2a mRNA is detected in the mouse uterus and is regulated by 17β-oestradiol (E2). In the present study, we investigated the effects of E2 and oestrogenic compounds on the regulation and localisation of Sprr2a protein in the mouse uterus. Immunohistochemical staining revealed that Sprr2a protein is detected only in the adult uterus, and not in the ovary, oviduct or testis. We also demonstrated that Sprr2a protein is tightly regulated by E2 in the mouse uterus and exclusively detected in luminal and glandular epithelial cells. Furthermore, Sprr2a is dose-dependently induced by oestrogenic compounds such as bisphenol A and 4-tert-octylphenol. Collectively, our studies suggest that Sprr2a protein may have a unique function in physiological events in the mouse uterus and can be used as an indicator to detect compounds with oestrogenic activity in the mouse uterus.
Additional keywords: cornified envelope, oestrogenic compound, oestrous.
References
Cabral, A., Voskamp, P., Cleton-Jansen, A. M., South, A., Nizetic, D., and Backendorf, C. (2001). Structural organization and regulation of the small proline-rich family of cornified envelope precursors suggest a role in adaptive barrier function. J. Biol. Chem. 276, 19 231–19 237.| Structural organization and regulation of the small proline-rich family of cornified envelope precursors suggest a role in adaptive barrier function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt12rsLw%3D&md5=4c37e8ed86df37f9116490b1f3cdd7bbCAS |
Dang, V. H., Nguyen, T. H., Choi, K. C., and Jeung, E. B. (2007). A calcium-binding protein, calbindin-D9k, is regulated through an estrogen-receptor mediated mechanism following xenoestrogen exposure in the GH3 cell line. Toxicol. Sci. 98, 408–415.
| A calcium-binding protein, calbindin-D9k, is regulated through an estrogen-receptor mediated mechanism following xenoestrogen exposure in the GH3 cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFGjtLY%3D&md5=04b59a27afaf8891a31b05f4a5b733e6CAS | 17504770PubMed |
de Koning, H. D., van den Bogaard, E. H., Bergboer, J. G., Kamsteeg, M., van Vlijmen-Willems, I. M., Hitomi, K., Henry, J., Simon, M., Takashita, N., Ishida-Yamamoto, A., Schalkwijk, J., and Zeeuwen, P. L. (2012). Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair. Br. J. Dermatol. 166, 1245–1254.
| Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vivVKlsg%3D%3D&md5=813859d658c31ba3fc940786bbf08c17CAS | 22329734PubMed |
Fata, J. E., Chaudhary, V., and Khokha, R. (2001). Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17β-estradiol during the estrous cycle. Biol. Reprod. 65, 680–688.
| Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17β-estradiol during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFenu7Y%3D&md5=353df0650f6bb0e6e59fa25747cd6351CAS | 11514328PubMed |
Fuchs, E., and Raghavan, S. (2002). Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 3, 199–209.
| Getting under the skin of epidermal morphogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Cks7o%3D&md5=f06a84fe144eed3f96ce11843ffad127CAS | 11972157PubMed |
Hewitt, S. C., Deroo, B. J., Hansen, K., Collins, J., Grissom, S., Afshari, C. A., and Korach, K. S. (2003). Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen. Mol. Endocrinol. 17, 2070–2083.
| Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFSrsb0%3D&md5=a1ca7d6e074968b68eae5d31271ea493CAS | 12893882PubMed |
Hong, S. H., Nah, H. Y., Lee, J. Y., Gye, M. C., Kim, C. H., and Kim, M. K. (2004a). Analysis of estrogen-regulated genes in mouse uterus using cDNA microarray and laser capture microdissection. J. Endocrinol. 181, 157–167.
| Analysis of estrogen-regulated genes in mouse uterus using cDNA microarray and laser capture microdissection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVaqs7o%3D&md5=1fee9305a0e9e8e6376a91de8a6a0022CAS | 15072576PubMed |
Hong, S. H., Nah, H. Y., Lee, J. Y., Lee, J. W., Gye, M. C., Kim, C. H., Kang, B. M., and Kim, M. K. (2004b). Estrogen regulates the expression of the small proline-rich 2 gene family in the mouse uterus. Mol. Cells 17, 477–484.
| 1:CAS:528:DC%2BD2cXlvFSlsrY%3D&md5=f98689982feeced2a9545207c5c5795cCAS | 15232223PubMed |
Hong, S. H., Lee, J. E., Jeong, J. J., Hwang, S. J., Bae, S. N., Choi, J. Y., and Song, H. (2010). Small proline-rich protein 2 family is a cluster of genes induced by estrogenic compounds through nuclear estrogen receptors in the mouse uterus. Reprod. Toxicol. 30, 469–476.
| Small proline-rich protein 2 family is a cluster of genes induced by estrogenic compounds through nuclear estrogen receptors in the mouse uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGhtbjF&md5=95d9ebf60bb2e1d616d48e29400301b7CAS | 20438831PubMed |
Jefferson, W. N., Padilla-Banks, E., and Newbold, R. R. (2000). Lactoferrin is an estrogen responsive protein in the uterus of mice and rats. Reprod. Toxicol. 14, 103–110.
| Lactoferrin is an estrogen responsive protein in the uterus of mice and rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVGnsrk%3D&md5=762aa0cff1925607f08678b9739150f8CAS | 10825673PubMed |
Kartasova, T., and van de Putte, P. (1988). Isolation, characterization, and UV-stimulated expression of two families of genes encoding polypeptides of related structure in human epidermal keratinocytes. Mol. Cell. Biol. 8, 2195–2203.
| 1:CAS:528:DyaL1cXmt1elsLc%3D&md5=b5eda9cf4afe98bd49be1582be172091CAS | 3133554PubMed |
Migliolo, L., Silva, O. N., Silva, P. A., Costa, M. P., Costa, C. R., Nolasco, D. O., Barbosa, J. A., Silva, M. R., Bemquerer, M. P., Lima, L. M., Romanos, M. T., Freitas, S. M., Magalhães, B. S., and Franco, O. L. (2012). Structural and functional characterization of a multifunctional alanine-rich peptide analogue from Pleuronectes americanus. PLoS One 7, e47047.
| Structural and functional characterization of a multifunctional alanine-rich peptide analogue from Pleuronectes americanus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKjt7nK&md5=ce4163d29ae0b2ae3305586b97af5e46CAS | 23056574PubMed |
Nozaki, I., Lunz, J. G., Specht, S., Stolz, D. B., Taguchi, K., Subbotin, V. M., Murase, N., and Demetris, A. J. (2005). Small proline-rich proteins 2 are noncoordinately upregulated by IL-6/STAT3 signaling after bile duct ligation. Lab. Invest. 85, 109–123.
| 1:CAS:528:DC%2BD2cXhtFGgs7nJ&md5=f6678f791f1623cd31db766b863ae18dCAS | 15558059PubMed |
Patel, S., Kartasova, T., and Segre, J. A. (2003). Mouse Sprr locus: a tandem array of coordinately regulated genes. Mamm. Genome 14, 140–148.
| Mouse Sprr locus: a tandem array of coordinately regulated genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Ckt7c%3D&md5=02a56cf339ca36eecfcc8d9378ba7f51CAS | 12584609PubMed |
Reel, J. R., Lamb, J. C., and Neal, B. H. (1996). Survey and assessment of mammalian estrogen biological assays for hazard characterization. Fundam. Appl. Toxicol. 34, 288–305.
| Survey and assessment of mammalian estrogen biological assays for hazard characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlyitA%3D%3D&md5=70ff4800d673009fd480133696499dfdCAS | 8954758PubMed |
Reese, J., Das, S. K., Paria, B. C., Lim, H., Song, H., Matsumoto, H., Knudtson, K. L., DuBois, R. N., and Dey, S. K. (2001). Global gene expression analysis to identify molecular markers of uterine receptivity and embryo implantation. J. Biol. Chem. 276, 44 137–44 145.
| Global gene expression analysis to identify molecular markers of uterine receptivity and embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnnvFGhsQ%3D%3D&md5=f769cbe4524a4afde637e1b6da540ec6CAS |
Richard, C., Gao, J., Brown, N., and Reese, J. (2003). Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 144, 1533–1541.
| Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVegtrk%3D&md5=09d7077687c2cf50a697d02d689dfc46CAS | 12639938PubMed |
Song, H. J., Poy, G., Darwiche, N., Lichti, U., Kuroki, T., Steinert, P. M., and Kartasova, T. (1999). Mouse Sprr2 genes: a clustered family of genes showing differential expression in epithelial tissues. Genomics 55, 28–42.
| Mouse Sprr2 genes: a clustered family of genes showing differential expression in epithelial tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXoslWhtA%3D%3D&md5=61e7eec0a60aa53f8fd8ce7a7dcbcc5fCAS | 9888996PubMed |
Tan, Y. F., Li, F. X., Piao, Y. S., Sun, X. Y., and Wang, Y. L. (2003). Global gene profiling analysis of mouse uterus during the oestrous cycle. Reproduction 126, 171–182.
| Global gene profiling analysis of mouse uterus during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjsbY%3D&md5=c57d9160cf95f99ce9751048e0283167CAS | 12887274PubMed |
Tesfaigzi, J., and Carlson, D. M. (1996). Cell cycle-specific expression of G(0)SPR1 in Chinese hamster ovary cells. Exp. Cell Res. 228, 277–282.
| Cell cycle-specific expression of G(0)SPR1 in Chinese hamster ovary cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFSisr8%3D&md5=49098e3770e60326454b589b6e11dba3CAS | 8912721PubMed |
Watanabe, H., Suzuki, A., Mizutani, T., Khono, S., Lubahn, D. B., and Iguchi, T. (2002). Genome-wide analysis of changes in early gene expression induced by estrogen. Genes Cells 7, 497–507.
| Genome-wide analysis of changes in early gene expression induced by estrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFShs7k%3D&md5=e3fb1e8faa5c36f490aefbb0e554b893CAS | 12047351PubMed |