Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices
Ivina R. Brito A D , Isadora M. T. Lima B , Min Xu C , Lonnie D. Shea C , Teresa K. Woodruff C and José R. Figueiredo AA Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), PPGCV, State University of Ceará, Fortaleza, CE 60740-930, Brazil.
B Maurício de Nassau Faculty, Fortaleza, CE 60055-400, Brazil.
C Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA.
D Corresponding author. Email: ivinabrito@yahoo.com.br
Reproduction, Fertility and Development 26(7) 915-930 https://doi.org/10.1071/RD12401
Submitted: 20 December 2012 Accepted: 12 June 2013 Published: 19 July 2013
Abstract
The in vitro culture of ovarian follicles has provided critical insight into the biology of the follicle and its enclosed oocyte and the physical interaction and communication between the theca and granulosa cells and the oocyte that is necessary to produce meiotically competent oocytes. Various two-dimensional (2D) and three-dimensional (3D) culture systems have been developed to evaluate the effect of growth factors, hormones, extracellular matrix components and culture conditions on follicle development and oocyte growth and maturation. Among these culture systems, 3D systems make it possible to maintain follicle structure and support communication between the various cell compartments within the follicle. In this review article, we will discuss the three main approaches to ovarian follicle culture: 2D attachment systems, 3D floating systems and 3D encapsulated systems. We will specifically emphasise the development of and advances in alginate-based encapsulated systems for in vitro follicle culture.
Additional keywords: cell culture, cytoskeleton, folliculogenesis, growth.
References
Abir, R., Fisch, B., Nitke, S., Okon, E., Raz, A., and Ben Rafael, Z. (2001). Morphological study of fully and partially isolated early human follicles. Fertil. Steril. 75, 141–146.| Morphological study of fully and partially isolated early human follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzitF2jsA%3D%3D&md5=108dc857a55eaf863ad227706e57fea0CAS | 11163829PubMed |
Acevedo, N., Ding, J., and Smith, G. D. (2007). Insulin signalling in mouse oocytes. Biol. Reprod. 77, 872–879.
| Insulin signalling in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Cnu77I&md5=f8302fc59484578d07539be7414f716fCAS | 17625112PubMed |
Ackert, C. L., Gittens, J. E., O’Brien, M. J., Eppig, J. J., and Kidder, G. M. (2001). Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev. Biol. 233, 258–270.
| Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1WgsbY%3D&md5=9ccebd9a19cbdc34b704d3bbfeb4f871CAS | 11336494PubMed |
Adams, J. C., and Watt, F. M. (1993). Regulation of development and differentiation by extracellular matrix. Development 117, 1183–1198.
| 1:STN:280:DyaK2c%2FgvVGhtg%3D%3D&md5=d627f2ea36b1d7d6e93610e24f88d174CAS | 8404525PubMed |
Alberts, B., Johnson, A., and Lewis, J. (2002). ‘Molecular Biology of the Cell’. 4th edn. (Garland Science: New York.)
Alsberg, E., Anderson, K. W., Albeiruti, A., Franceschi, R. T., and Mooney, D. J. (2001). Cell-interactive alginate hydrogels for bone-tissue engineering. J. Dent. Res. 80, 2025–2029.
| Cell-interactive alginate hydrogels for bone-tissue engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFOlt7o%3D&md5=83010fc7ce79e5bfb97383dd9c5b1738CAS | 11759015PubMed |
Amorim, C. A., Van Langendonckt, A., David, A., Dolmans, M. M., and Donnez, J. (2009). Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum. Reprod. 24, 92–99.
| Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtbbI&md5=6ce8c9cb7a211c517baf60d13b02265dCAS | 18815120PubMed |
Amsden, B., and Turner, N. (1999). Diffusion characteristics of calcium alginate gels. Biotechnol. Bioeng. 65, 605–610.
| Diffusion characteristics of calcium alginate gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVaqsbw%3D&md5=5d3b3813d13d1d348cca62a6c3756fe8CAS | 10516587PubMed |
Azab, A. K., Orkin, B., Doviner, V., Nissan, A., Klein, M., Srebnik, M., and Rubinstein, A. (2006). Cross-linked chitosan implants as potential degradable devices for brachytherapy, in vitro and in vivo analysis. J. Control. Release 111, 281–289.
| Cross-linked chitosan implants as potential degradable devices for brachytherapy, in vitro and in vivo analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xisl2lurk%3D&md5=9e8d62f962d455eae4947f2a9b6d7550CAS | 16499987PubMed |
Belli, M., Vigone, G., Merico, V., Redi, C. A., Zuccotti, M., and Garagna, S. (2012). Towards a 3D culture of mouse ovarian follicles. Int. J. Dev. Biol. 56, 931–937.
| Towards a 3D culture of mouse ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVyqsbo%3D&md5=65c913e6ca0885a9989d23fa457bdea4CAS | 23417415PubMed |
Benton, G., George, J., Kleinman, H. K., and Arnaoutova, I. P. (2009). Advancing science and technology via 3D culture on basement membrane matrix. J. Cell. Physiol. 221, 18–25.
| Advancing science and technology via 3D culture on basement membrane matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlOnsLc%3D&md5=511549e7ae0a66fc43a5fec556526bf0CAS | 19492404PubMed |
Ben-Ze’ev, A., and Amsterdam, A. (1986). Regulation of cytoskeletal proteins involved in cell contact formation during differentiation of granulosa cells on extracellular matrix. Proc. Natl. Acad. Sci. USA 83, 2894–2898.
| Regulation of cytoskeletal proteins involved in cell contact formation during differentiation of granulosa cells on extracellular matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1alsbY%3D&md5=8f70ff52e51165b72ec8ccfe691471ccCAS | 3010322PubMed |
Birgersdotter, A., Sandberg, R., and Ernberg, I. (2005). Gene expression perturbation in vitro – a growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol. 15, 405–412.
| Gene expression perturbation in vitro – a growing case for three-dimensional (3D) culture systems.Crossref | GoogleScholarGoogle Scholar | 16055341PubMed |
Bishonga, C., Takahashi, Y., Katagiri, S., Nagano, M., and Ishikawa, A. (2001). In vitro growth of mouse ovarian preantral follicles and the capacity of their oocytes to develop to the blastocyst stages. J. Vet. Med. Sci. 63, 619–624.
| In vitro growth of mouse ovarian preantral follicles and the capacity of their oocytes to develop to the blastocyst stages.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fit1Kgsw%3D%3D&md5=18e8ed6f4192e0e8ae95b0969579760eCAS | 11459007PubMed |
Boland, N. I., Humpherson, P. G., Leese, H. J., and Gosden, R. G. (1993). Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol. Reprod. 48, 798–806.
| Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1enuro%3D&md5=6e86910334dd905771536d42ebbbb9daCAS | 8485244PubMed |
Boland, N. I., Humpherson, P. G., Leese, H. J., and Gosden, R. G. (1994). Characterization of follicular energy metabolism. Hum. Reprod. 9, 604–609.
| 1:STN:280:DyaK2czitFGhsg%3D%3D&md5=f5a8441a34fcd63b9bbf7b3bdca4de70CAS | 8046010PubMed |
Boontheekul, T., Kong, H., and Mooney, D. (2005). Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26, 2455–2465.
| Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCiu7fP&md5=f4d3cc4ce2118e214d7a02c653a9c95dCAS | 15585248PubMed |
Buccione, R., Vanderhyden, B. C., Caron, P. J., and Eppig, J. J. (1990). FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev. Biol. 138, 16–25.
| FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslamu74%3D&md5=106f89998d65b17a981d36b2a816a9efCAS | 2155145PubMed |
Buratini, J. (2007). Controle endócrino e local da foliculogênese em bovinos. Rev Bras Reprod An 31, 190–196.
Buratini, J., Teixeira, A. B., Costa, I. B., Glapinski, V. F., Pinto, M. G. L., Giometti, I. C., Barros, C. M., Cao, M., Nicola, E. S., and Price, C. A. (2005). Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor-3c and -4, in bovine antral follicles. Reproduction 130, 343–350.
| Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor-3c and -4, in bovine antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWisr3I&md5=631cf487c340cbc1dff4fb283efd747aCAS | 16123241PubMed |
Butcher, J. T., and Nerem, R. M. (2004). Porcine aortic valve interstitial cells in three-dimensional culture: comparison of phenotype with aortic smooth muscle cells. J. Heart Valve Dis. 13, 478–485.
| 15222296PubMed |
Cecconi, S., Barboni, B., Coccia, M., and Mattioli, M. (1999). In vitro development of sheep preantral follicles. Biol. Reprod. 60, 594–601.
| In vitro development of sheep preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFekt7g%3D&md5=dbb6643632fb3ea95b720722c301e8b5CAS | 10026104PubMed |
Chaves, R. N., Martins, F. S., Saraiva, M. V. A., Celestino, J. J. H., Lopes, C. A. P., Correia, J. C., Lima-Verde, I. B., Matos, M. H. T., Báo, S. N., Name, K. P. O., Campello, C. C., Silva, J. R. V., and Figueiredo, J. R. (2008). Chilling ovarian fragments during transportation improves viability and growth of goat preantral follicles cultured in vitro. Reprod. Fertil. Dev. 20, 640–647.
| Chilling ovarian fragments during transportation improves viability and growth of goat preantral follicles cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cvgvVelsg%3D%3D&md5=46c70eddf9c05902c1b1f93561b0db8bCAS | 18577361PubMed |
Chaves, R. N., Alves, A. M. C. V., Duarte, A. B. G., Araújo, V. R., Celestino, J. J. H., Matos, M. H. T., Lopes, C. A. P., Campello, C. C., Name, K. P. O., Báo, S. N., and Figueiredo, J. R. (2010). Nerve growth factor promotes the survival of goat preantral follicles cultured in vitro. Cells Tissues Organs 192, 272–282.
| Nerve growth factor promotes the survival of goat preantral follicles cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGgsLrN&md5=7419154bc21ec770642e3e7bb811d00cCAS | 20587997PubMed |
Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., and Ingber, D. E. (1997). Geometric control of cell life and death. Science 276, 1425–1428.
| Geometric control of cell life and death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFOhu7s%3D&md5=249941640155fefe60a2732a9e1fe34cCAS | 9162012PubMed |
Clementi, F., Crudele, M. A., Parente, E., Mancini, M., and Moresi, M. (1999). Production and characterization of alginate from Azotobacter vinelandii. J. Sci. Food Agric. 79, 602–610.
| Production and characterization of alginate from Azotobacter vinelandii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVymurc%3D&md5=eeb44ecf4062af90736e29ec6ff4dc1cCAS |
Cortvrindt, R., Smitz, J., and Van Steirteghem, A. C. (1996). In vitro maturation, fertilisation and embryo development of immature oocytes from early preantral follicles from pre-pubertal mice in a simplified culture system. Hum. Reprod. 11, 2656–2666.
| In vitro maturation, fertilisation and embryo development of immature oocytes from early preantral follicles from pre-pubertal mice in a simplified culture system.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7ntlClsQ%3D%3D&md5=3a28a5cc092e9ab05fe46320141ef2e6CAS | 9021369PubMed |
Cukierman, E., Pankov, R., and Yamada, K. M. (2002). Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14, 633–640.
| Cell interactions with three-dimensional matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVCrtbc%3D&md5=7ac58328d1e17ae63166fc77e94821cdCAS | 12231360PubMed |
Cushing, M. C., and Anseth, K. S. (2007). Hydrogel cell cultures. Science 316, 1133–1134.
| Hydrogel cell cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVCgtrs%3D&md5=2ef0d067eb68fe84cdead41e6b8436aeCAS | 17525324PubMed |
Dawson, E., Mapili, G., Erickson, K., Taqvi, S., and Roy, K. (2008). Biomaterials for stem cell differentiation. Adv. Drug Deliv. Rev. 60, 215–228.
| Biomaterials for stem cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVelt7vI&md5=c1fd986a33b9ec7184be75733a697d49CAS | 17997187PubMed |
Demeestere, I., Centner, J., Gervy, Y., and Delbaere, A. (2005). Impact of various endocrine and paracrine factors on culture of preantral follicles in rodents. Reproduction 130, 147–156.
| Impact of various endocrine and paracrine factors on culture of preantral follicles in rodents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSksbrF&md5=44b7ef4d0385f2c2ddb641099618d73eCAS | 16049152PubMed |
Desai, N., Alex, A., Abdel Hafez, F., Calabro, A., Goldfarb, J., Fleischman, A., and Falcone, T. (2010). Three-dimensional in vitro follicle growth, overview of culture models, biomaterials, design parameters and future directions. Reprod. Biol. Endocrinol. 8, 119.
| Three-dimensional in vitro follicle growth, overview of culture models, biomaterials, design parameters and future directions.Crossref | GoogleScholarGoogle Scholar | 20946661PubMed |
Desai, N., Abdelhafez, F., Calabro, A., and Falcone, T. (2012). Three-dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation. Reprod. Biol. Endocrinol. 10, 29–40.
| Three-dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSks7bL&md5=66bff1ee7bc4d8808dec3112041ee2c4CAS | 22513305PubMed |
Dhoot, N. O., Tobias, C. A., Fischer, I., and Wheatley, M. A. (2004). Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J. Biomed. Mater. Res. 71A, 191–200.
| Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVegsr8%3D&md5=842618f206af13caacc243eda51fb49cCAS |
Donati, I., Holtan, S., Morch, Y. A., Borgogna, M., Dentini, M., and Skjåk-Bræk, G. (2005). New hypothesis on the role of alternating sequences in calcium–alginate gels. Biomacromolecules 6, 1031–1040.
| New hypothesis on the role of alternating sequences in calcium–alginate gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVWjsQ%3D%3D&md5=b562e2ec4298ce68917a0ee71429e1b9CAS | 15762675PubMed |
Donati, I., Benegas, J. C., and Paoletti, S. (2006). Polyelectrolyte study of the calcium-induced chain association of pectate. Biomacromolecules 7, 3439–3447.
| Polyelectrolyte study of the calcium-induced chain association of pectate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SjtbfF&md5=5391c3409820f70975ade22083ad17d8CAS | 17154472PubMed |
Dulieu, C., Poncelet, D., and Neufeld, R. (1999). Encapsulation and immobilization techniques. In ‘Cell Encapsulation Technology and Therapeutics’. (Eds W. M. Kuhtreiber, R. P. Lanza and W. L. Chick.) pp. 3–17. (Birkhauser: Boston.)
Edson, M. A., Nagaraja, A. K., and Matzuk, M. M. (2009). The mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624–712.
| The mammalian ovary from genesis to revelation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyhsrbL&md5=252ce7f511410f03440a3f9957cd2edbCAS | 19776209PubMed |
Eitzen, G. (2003). Actin remodelling to facilitate membrane fusion. Biochim. Biophys. Acta 1641, 175–181.
| Actin remodelling to facilitate membrane fusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Gru7o%3D&md5=ce22758b2bea64c9e0c6caa4823b7cc8CAS | 12914958PubMed |
Eppig, J. J. (1991). Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 13, 569–574.
| Intercommunication between mammalian oocytes and companion somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387is1ShsA%3D%3D&md5=9bac570f09cc99ae2761c48abbb6d6ceCAS | 1772412PubMed |
Eppig, J. J., and O’Brien, M. J. (1996). Development in vitro of mouse oocytes from primordial follicles. Biol. Reprod. 54, 197–207.
| Development in vitro of mouse oocytes from primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSisLjO&md5=2a1e993a25d9b98aaf05879092ac11b0CAS | 8838017PubMed |
Eppig, J. J., and Schroeder, A. C. (1989). Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation and fertilisation in vitro. Biol. Reprod. 41, 268–276.
| Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation and fertilisation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2FivVGhsA%3D%3D&md5=2d5746549d15aae1ad4cf5e1953dc818CAS | 2508774PubMed |
Eppig, J. J., and Wigglesworth, K. (1995). Factors affecting the developmental competence of mouse oocytes grown in vitro: oxygen concentration. Mol. Reprod. Dev. 42, 447–456.
| Factors affecting the developmental competence of mouse oocytes grown in vitro: oxygen concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVGisbw%3D&md5=f9b3626d06b07f89e1dda20934cbc9b9CAS | 8607975PubMed |
Eppig, J. J., Wigglesworth, K., Pendola, F. L., and Hirao, Y. (1997). Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol. Reprod. 56, 976–984.
| Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFKgtbg%3D&md5=41d9c62fc75b8ac5683d48433211e784CAS | 9096881PubMed |
Eppig, J. J., Pendola, F. L., Wigglesworth, K., and Pendola, J. K. (2005). Mouse oocytes regulate metabolic co-operativity between granulosa cells and oocytes: amino acid transport. Biol. Reprod. 73, 351–357.
| Mouse oocytes regulate metabolic co-operativity between granulosa cells and oocytes: amino acid transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yqsLk%3D&md5=0ba0ce7f81f904fd48de58613495b41bCAS | 15843493PubMed |
Eyrich, D., Brandl, F., Appel, B., Wiese, H., Maier, G., Wenzel, M., Staudenmaier, R., Goepferich, A., and Blunk, T. (2007). Long-term stable fibrin gels for cartilage engineering. Biomaterials 28, 55–65.
| Long-term stable fibrin gels for cartilage engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWku7nL&md5=af420039ba4a875c98a5a122fb57939bCAS | 16962167PubMed |
Faustino, L. R., Rossetto, R., Lima, I. M., Silva, C. M., Saraiva, M. V., Lima, L. F., Silva, A. W., Donato, M. A., Campello, C. C., Peixoto, C. A., Figueiredo, J. R., and Rodrigues, A. P. R. (2011). Expression of keratinocyte growth factor in goat ovaries and its effects on preantral follicles within cultured ovarian cortex. Reprod. Sci. 18, 1222–1229.
| Expression of keratinocyte growth factor in goat ovaries and its effects on preantral follicles within cultured ovarian cortex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Cqsr3M&md5=942d41a81dce6cc661ea1f3db16f840aCAS | 21693780PubMed |
Ferreira, E. M., Vireque, A. A., Adona, P. R., Meirelles, F. V., Ferriani, R. A., and Navarro, P. A. A. S. (2009). Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71, 836–848.
| Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVSgs7k%3D&md5=e5864ea252c641d0bd39fd46e943dd22CAS | 19121865PubMed |
Fortune, J. E. (2003). The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim. Reprod. Sci. 78, 135–163.
| The early stages of follicular development: activation of primordial follicles and growth of preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2gsbc%3D&md5=9c3b8629cf54554acacadb669d75c714CAS | 12818642PubMed |
Fortune, J. E., Rivera, G. M., and Yang, M. Y. (2004). Follicular development: the role of the follicular microenvironment in selection of the dominant follicle. Anim. Reprod. Sci. 82–83, 109–126.
| Follicular development: the role of the follicular microenvironment in selection of the dominant follicle.Crossref | GoogleScholarGoogle Scholar | 15271447PubMed |
Gautier, A., Carpentier, B., Dufresne, M., Vu Dinh, Q., Paullier, P., and Legallais, C. (2011). Impact of alginate type and bead diameter on mass transfers and the metabolic activities of encapsulated c3a cells in bioartificial liver applications. Eur. Cell. Mater. 21, 94–106.
| 1:CAS:528:DC%2BC3MXitVGhtrg%3D&md5=f7eb5071398c6dd01dd515a68a72a351CAS | 21267945PubMed |
George, M., and Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review. J. Control. Release 114, 1–14.
| Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFCrsbg%3D&md5=f0cb2458a3d7d8449831dd838313c2eaCAS | 16828914PubMed |
Gigli, I., Byrd, D. D., and Fortune, J. E. (2006). Effects of oxygen tension and supplements to the culture medium on activation and development of bovine follicles. Theriogenology 66, 344–353.
| Effects of oxygen tension and supplements to the culture medium on activation and development of bovine follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Gksbk%3D&md5=354ac7edeea9beba6be05275de2d6a12CAS | 16442155PubMed |
Gojgini, S., Tokatlian, T., and Segura, T. (2011). Utilising cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels. Mol. Pharm. 8, 1582–1591.
| Utilising cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKmtbvF&md5=2c5a8628c1fcd42967282e671576b98aCAS | 21823632PubMed |
Gombotz, W. R., and Wee, S. (1998). Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31, 267–285.
| Protein release from alginate matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvVSjsLc%3D&md5=efa361992c1fc430a5af2f031cc7a226CAS | 10837629PubMed |
Granot, I., and Dekel, N. (2002). Connexin43 in rat oocytes: developmental modulation of its phosphorylation. Biol. Reprod. 66, 568–573.
| Connexin43 in rat oocytes: developmental modulation of its phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitL8%3D&md5=45eb5c994d8a42ce9881b5adb56d315cCAS | 11870059PubMed |
Grazul-Bilska, A. T., Reynolds, L. P., and Redmer, D. A. (1997). Gap junctions in the ovaries. Biol. Reprod. 57, 947–957.
| Gap junctions in the ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFSjurs%3D&md5=ea7835bcda9e5ca33f6777f99b36b604CAS | 9369157PubMed |
Harris, L. D., Kim, B. S., and Mooney, D. J. (1998). Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 42, 396–402.
| Open pore biodegradable matrices formed with gas foaming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFOjsbc%3D&md5=8a609832874d33a0dabca319b639fd8cCAS | 9788501PubMed |
Hartshorne, G. M. (1997). In vitro culture of ovarian follicles. Rev. Reprod. 2, 94–104.
| In vitro culture of ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktV2nur0%3D&md5=0064ade15daa5e09e9df3390599106beCAS | 9414471PubMed |
Haug, A., and Smidsrød, O. (1970). Selectivity of some anionic polymers for divalent metal ions. Acta Chem. Scand. 24, 843–854.
| Selectivity of some anionic polymers for divalent metal ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkt1Kju7g%3D&md5=2da0e16ebf3e2a19bea8ccc6291166ddCAS |
Hay, E. (1984). ‘The Role of Extracellular Matrix in Development’. (Liss: New York.)
Heise, M., Koepsel, R., Russell, A. J., and McGee, E. A. (2005). Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology. Reprod. Biol. Endocrinol. 3, 47.
| Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology.Crossref | GoogleScholarGoogle Scholar | 16162282PubMed |
Heise, M. K., Koepsel, R., McGee, E. A., and Russell, A. J. (2009). Dynamic oxygen enhances oocyte maturation in long-term follicle culture. Tissue Eng. Part C Methods 15, 323–332.
| Dynamic oxygen enhances oocyte maturation in long-term follicle culture.Crossref | GoogleScholarGoogle Scholar | 19552585PubMed |
Heo, Y. S., Cabrera, L. M., Bormann, C. L., Shah, C. T., Takayama, S., and Smith, G. D. (2010). Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum. Reprod. 25, 613–622.
| Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c%2FpsVaisQ%3D%3D&md5=ce5ecb9e514e0d25552cdb0eb7ff1b35CAS | 20047936PubMed |
Hornick, J. E., Duncan, F. E., Shea, L. D., and Woodruff, T. K. (2012). Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum. Reprod. 27, 1801–1810.
| Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVOls7k%3D&md5=9cacca6ec368469375ed58b2c77017e4CAS | 22456922PubMed |
Hovatta, O. (2004). Cryopreservation and culture of human ovarian–cortical tissue containing early follicles. Eur. J. Obstet. Gynecol. Reprod. Biol. 113, S50–S54.
| Cryopreservation and culture of human ovarian–cortical tissue containing early follicles.Crossref | GoogleScholarGoogle Scholar | 15041132PubMed |
Hu, Y., Betzendahl, I., Cortvrindt, R., Smitz, J., and Eichenlaub-Ritter, U. (2001). Effects of low O2 and ageing on spindles and chromosomes in mouse oocytes from pre-antral follicle culture. Hum. Reprod. 16, 737–748.
| Effects of low O2 and ageing on spindles and chromosomes in mouse oocytes from pre-antral follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSisro%3D&md5=cfa0fdfa8695a81345d768c5307cbdceCAS | 11278227PubMed |
Hwa, A. J., Fry, R. C., Sivaraman, A., So, P. T., Samson, L. D., Stolz, D. B., and Griffith, L. G. (2007). Rat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes. FASEB J. 21, 2564–2579.
| Rat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFKhu7o%3D&md5=5e3a85a4f58722b9733e44e3ab930857CAS | 17426068PubMed |
Jiao, Z. X., and Woodruff, T. K. (2013). Follicle microenvironment-associated alterations in gene expression in the mouse oocyte and its polar body. Fertil. Steril. , .
| Follicle microenvironment-associated alterations in gene expression in the mouse oocyte and its polar body.Crossref | GoogleScholarGoogle Scholar | 23465709PubMed |
Jin, S. Y., Lei, L., Shikanov, A., Shea, L. D., and Woodruff, T. K. (2010). A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse. Fertil. Steril. 93, 2633–2639.
| A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse.Crossref | GoogleScholarGoogle Scholar | 20004373PubMed |
Joyce, I. M., Pendola, F. L., Wigglesworth, K., and Eppig, J. J. (1999). Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev. Biol. 214, 342–353.
| Oocyte regulation of kit ligand expression in mouse ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1CrtLk%3D&md5=2c962a8c92ea84ad1b24ddeb0c8fcc29CAS | 10525339PubMed |
Kapus, A., Grinstein, S., Wasan, S., Kandasamy, R., and Orlowski, J. (1994). Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells: ATP dependence, osmotic sensitivity and role in cell proliferation. J. Biol. Chem. 269, 23 544–23 552.
| 1:CAS:528:DyaK2cXmtVWktbs%3D&md5=6114beae9cd14de40ef501753ae6acc2CAS |
Kedem, A., Hourvitz, A., Fisch, B., Shachar, M., Cohen, S., Ben-Haroush, A., Dor, J., Freud, E., Felz, C., and Abir, R. (2011). Alginate scaffold for organ culture of cryopreserved–thawed human ovarian cortical follicles. J. Assist. Reprod. Genet. 28, 761–769.
| Alginate scaffold for organ culture of cryopreserved–thawed human ovarian cortical follicles.Crossref | GoogleScholarGoogle Scholar | 21785966PubMed |
Kiritoshi, Y., and Ishihara, K. (2004). Synthesis of hydrophilic cross-linker having phosphorylcholine-like linkage for improvement of hydrogel properties. Polymer 45, 7499–7504.
| Synthesis of hydrophilic cross-linker having phosphorylcholine-like linkage for improvement of hydrogel properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFGnu7Y%3D&md5=d487a42e0d22cb4fbe3969c60a4b2410CAS |
Knight, P. G., and Glister, C. (2006). TGF-β superfamily members and ovarian follicle development. Reproduction 132, 191–206.
| TGF-β superfamily members and ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjsr0%3D&md5=6ca0858563a5e5fe3bf61e5c81d9c0e4CAS | 16885529PubMed |
Kohn, R., and Luknar, O. (1977). Intermolecular calcium ion binding on polyuronates – polygalacturonate and polyguluronate. Collect. Czech. Chem. Commun. 42, 731–744.
| Intermolecular calcium ion binding on polyuronates – polygalacturonate and polyguluronate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXltlKhsL8%3D&md5=2385e6b2dc35678c76392bc3cf11ba26CAS |
Koo, L. Y., Irvine, D. J., Mayes, A. M., Lauffenburger, D. A., and Griffith, L. G. (2002). Co-regulation of cell adhesion by nanoscale RGD organisation and mechanical stimulus. J. Cell Sci. 115, 1423–1433.
| 1:CAS:528:DC%2BD38Xjt1Gnt7w%3D&md5=b209e977eeb4033b3f9c8144525da3b7CAS | 11896190PubMed |
Kreeger, P. K., Woodruff, T. K., and Shea, L. D. (2003). Murine granulosa cell morphology and function are regulated by a synthetic Arg/Gly/Asp matrix. Mol. Cell. Endocrinol. 205, 1–10.
| Murine granulosa cell morphology and function are regulated by a synthetic Arg/Gly/Asp matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVSksr4%3D&md5=e3e32499b87d82311f4eef5f64446f53CAS | 12890562PubMed |
Kreeger, P. K., Fernandes, N. N., Woodruff, T. K., and Shea, L. D. (2005). Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol. Reprod. 73, 942–950.
| Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGktb%2FM&md5=741a393d85c5b37eecae60f145a2cbe2CAS | 15987824PubMed |
Kreeger, P. K., Deck, J. W., Woodruff, T. K., and Shea, L. D. (2006). The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 27, 714–723.
| The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFakur3E&md5=35b85453b0d8901db0a2503dec95ba9cCAS | 16076485PubMed |
Kumar, T. R., and Matzuk, M. M. (2000). Gene knockout models to study the hypothalamus–pituitary–gonadal axis. In ‘Gene Engineering and Molecular Models in Endocrinology’. Vol. 22. (Ed. M. A. Shupnik.) pp. 167–216. (The Human Press: Totowa, NJ.)
Lane, M., Baltz, J. M., and Bavister, B. D. (1998). Regulation of intracellular pH in hamster preimplantation embryos by the sodium–hydrogen (Na+/H+) antiporter. Biol. Reprod. 59, 1483–1490.
| Regulation of intracellular pH in hamster preimplantation embryos by the sodium–hydrogen (Na+/H+) antiporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVOhs7c%3D&md5=a67f8622665748b1495667517960540cCAS | 9828196PubMed |
Laurent, T. C., and Fraser, J. R. (1992). Hyaluronan. FASEB J. 6, 2397–2404.
| 1:CAS:528:DyaK38XltVKgu7o%3D&md5=0a92dff6ae23ff4da8e759bae1ade9d5CAS | 1563592PubMed |
Le Beyec, J., Xu, R., Lee, S. Y., Nelson, C. M., Rizki, A., Alcaraz, J., and Bissell, M. J. (2007). Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp. Cell Res. 313, 3066–3075.
| Cell shape regulates global histone acetylation in human mammary epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFyktb0%3D&md5=4a92cc995abbe5c162e34d4da49208ecCAS | 17524393PubMed |
Lee, K. Y., and Mooney, D. J. (2001). Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880.
| Hydrogels for tissue engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFSqu7w%3D&md5=423f7a83fcd3f17fbeb01588fc0a4a1eCAS | 11710233PubMed |
Lee, K. Y., and Mooney, D. J. (2012). Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126.
| Alginate: properties and biomedical applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqt77L&md5=038483cb0735a3361fd862db8adbe817CAS | 22125349PubMed |
Lee, S. H., Moon, J. J., and West, J. L. (2008). Three-dimensional micro-patterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29, 2962–2968.
| Three-dimensional micro-patterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Kms7g%3D&md5=faed4b54feccf77cb557b2280a059814CAS | 18433863PubMed |
Lehenkari, P. P., and Horton, M. A. (1999). Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem. Biophys. Res. Commun. 259, 645–650.
| Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Gnurk%3D&md5=191b1926ae693afacbc297bbf0d98314CAS | 10364472PubMed |
Lenie, S., Cortvrindt, R., Adriaenssens, T., and Smitz, J. (2004). A reproducible two-step culture system for isolated primary mouse ovarian follicles as single functional units. Biol. Reprod. 71, 1730–1738.
| A reproducible two-step culture system for isolated primary mouse ovarian follicles as single functional units.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1yit7w%3D&md5=018d666d4be0c527a29ec353f1b3962bCAS | 15240420PubMed |
Liu, H. C., He, Z., and Rosenwaks, Z. (2001). Application of complementary DNA microarray (DNA chip) technology in the study of gene-expression profiles during folliculogenesis. Fertil. Steril. 75, 947–955.
| Application of complementary DNA microarray (DNA chip) technology in the study of gene-expression profiles during folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3jvF2muw%3D%3D&md5=ff7250e7d418a84696600d61abc9b9baCAS | 11334907PubMed |
Lochter, A., and Bissel, M. (1995). Involvement of extracellular matrix constituents in breast cancer. Semin. Cancer Biol. 6, 165–173.
| Involvement of extracellular matrix constituents in breast cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsFKrurk%3D&md5=0b973b29a540cfc4513db9f14cfccd96CAS | 7495985PubMed |
Loret de Mola, J. R., Barnhart, K., Kopf, G. S., Heyner, S., Garside, W., and Coutifaris, C. B. (2004). Comparison of two culture systems for the in vitro growth and maturation of mouse preantral follicles. Clin. Exp. Obstet. Gynecol. 31, 15–19.
| 1:STN:280:DC%2BD2c7gslynuw%3D%3D&md5=dba30f5bc6bd9902b7ae15086ec21e63CAS | 14998179PubMed |
Luciano, A. M., Franciosi, F., Modina, S. C., and Lodde, V. (2011). Gap junction-mediated communications regulate chromatin remodelling during bovine oocyte growth and differentiation through cAMP-dependent mechanism(s). Biol. Reprod. 85, 1252–1259.
| Gap junction-mediated communications regulate chromatin remodelling during bovine oocyte growth and differentiation through cAMP-dependent mechanism(s).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ShsLfI&md5=b220704047cebcc4e5d2a727e616d7faCAS | 21816847PubMed |
Luna, E. J. (1991). Molecular links between the cytoskeleton and membranes. Curr. Opin. Cell Biol. 3, 120–126.
| Molecular links between the cytoskeleton and membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVyltL4%3D&md5=d181b22823b109e880f0e7d8b4c1acbeCAS | 1854476PubMed |
Lutolf, M. P., and Hubbell, J. A. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55.
| Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFGmtg%3D%3D&md5=6c72f1a5a837822c920a853d2e7326c9CAS | 15637621PubMed |
Mainigi, M. A., Ord, T., and Schultz, R. M. (2011). Meiotic and developmental competence in mice are compromised following follicle development in vitro using an alginate-based culture system. Biol. Reprod. 85, 269–276.
| Meiotic and developmental competence in mice are compromised following follicle development in vitro using an alginate-based culture system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOnur8%3D&md5=ff999a204b4c39be380f3e1e3b2f8110CAS | 21490243PubMed |
Mann, B. K., and West, J. L. (2002). Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration and matrix protein synthesis on modified surfaces and in polymer scaffolds. J. Biomed. Mater. Res. 60, 86–93.
| Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration and matrix protein synthesis on modified surfaces and in polymer scaffolds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Cjsb4%3D&md5=ea7b01beafa4c5f05ca35665170fd4cdCAS | 11835163PubMed |
Martens, P., and Anseth, K. S. (2000). Characterization of hydrogels formed from acrylate-modified poly(vinyl alcohol) macromers. Polymer 41, 7715–7722.
| Characterization of hydrogels formed from acrylate-modified poly(vinyl alcohol) macromers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltF2rtLg%3D&md5=ed0094795d28a654cb3b26280892d212CAS |
Martinsen, A. (1992). Alginate as immobilization material: III. Diffusional properties. Biotechnol. Bioeng. 39, 186–194.
| Alginate as immobilization material: III. Diffusional properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslGisA%3D%3D&md5=6518995e028f142a2e8068a7ea5dbbcaCAS | 18600930PubMed |
Martinsen, A., Skjåk-Bræk, G., and Smidsrød, O. (1989). Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33, 79–89.
| Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsF2lsQ%3D%3D&md5=3211b1b0ddae55ae62d13768bd77a2bfCAS | 18587846PubMed |
Masters, K. S., Shah, D. N., Walker, G., Leinwand, L. A., and Anseth, K. S. (2004). Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J. Biomed. Mater. Res 71A, 172–180.
| Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVWlurs%3D&md5=cfa5894ba790118b60acdaa1f7b5f3cdCAS |
Matos, M. H. T., Lima-Verde, I. B., Luque, M. C. A., Maia, J. E., Silva, J. R. V., Celestino, J. J. H., Martins, F. S., Báo, S. N., Lucci, C. M., and Figueiredo, J. R. (2007). Essential role of follicle-stimulating hormone in the maintenance of caprine preantral follicle viability in vitro. Zygote 15, 173–182.
| Essential role of follicle-stimulating hormone in the maintenance of caprine preantral follicle viability in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVWqtb0%3D&md5=94740961aeeb86037931f6d789461b52CAS |
McGrath, S. A., Esquela, A. F., and Lee, S. J. (1995). Oocyte-specific expression of growth differentiation factor-9. Mol. Endocrinol. 9, 131–136.
| Oocyte-specific expression of growth differentiation factor-9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFGhs74%3D&md5=3ce989bf0b6686507e6eba1350bcd502CAS | 7760846PubMed |
Murray, A. A., Molinek, M. D., Baker, S. J., Kojima, F. N., Smith, M. F., Hillier, S. G., and Spears, N. (2001). Role of ascorbic acid in promoting follicle integrity and survival in intact mouse ovarian follicles in vitro. Reproduction 121, 89–96.
| Role of ascorbic acid in promoting follicle integrity and survival in intact mouse ovarian follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslarsw%3D%3D&md5=a6982e5b2bf0b38f6a97fe45bbdf79e5CAS | 11226031PubMed |
Nation, A., and Selwood, L. (2009). The production of mature oocytes from adult ovaries following primary follicle culture in a marsupial. Reproduction 138, 247–255.
| The production of mature oocytes from adult ovaries following primary follicle culture in a marsupial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemt7o%3D&md5=69694e20c2688203ea7d98a790d54e05CAS | 19494049PubMed |
Nguyen, K. T., and West, J. L. (2002). Photopolymerisable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314.
| Photopolymerisable hydrogels for tissue engineering applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVSku7g%3D&md5=8eebdb7a7f4e96d609f2284458c7f6f1CAS | 12219820PubMed |
Nilsson, E. E., and Skinner, M. K. (2003). Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol. Reprod. 69, 1265–1272.
| Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsLw%3D&md5=9d1ae6746c854d97cbb22eb05ce08f0fCAS | 12801979PubMed |
Nilsson, E. E., and Skinner, M. K. (2004). Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Mol. Cell. Endocrinol. 214, 19–25.
| Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWgsr8%3D&md5=903a56ae6f168ac999a5da480d156e61CAS | 15062541PubMed |
Nilsson, E. E., Kezele, P., and Skinner, M. K. (2002). Leukaemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol. Cell. Endocrinol. 188, 65–73.
| Leukaemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFWntrw%3D&md5=58a01b88d3ab7b4d9ed2bea9a81bbcd2CAS | 11911947PubMed |
Norris, R. P., Ratzan, W. J., Freudzon, M., Mehlmann, L. M., Krall, J., Movsesian, M. A., Wang, H., Ke, H., Nikolaev, V. O., and Jaffe, L. A. (2009). Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development 136, 1869–1878.
| Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1aktbw%3D&md5=44d08d073bae0e2d7f41dc23d2f49815CAS | 19429786PubMed |
O’Brien, M. J., Pendola, J. K., and Eppig, J. J. (2003). A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol. Reprod. 68, 1682–1686.
| A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12ltrY%3D&md5=32c2f034b2343163ef6fc303aabfd492CAS | 12606400PubMed |
Oktem, O., and Oktay, K. (2007). The role of extracellular matrix and activin-A in in vitro growth and survival of murine preantral follicles. Reprod. Sci. 14, 358–366.
| The role of extracellular matrix and activin-A in in vitro growth and survival of murine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsF2rsL4%3D&md5=ab056b9278578468d5153b4c812254efCAS | 17644808PubMed |
Otterlei, M., Ostgaard, K., Skjåk-Bræk, G., and Smidsrød, G. (1991). Induction of cytokine production from human monocytes stimulated with alginate. J. Immunother. 10, 286–291.
| Induction of cytokine production from human monocytes stimulated with alginate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtl2nsLs%3D&md5=905e0dad859e14c899cab70a262237d8CAS | 1931864PubMed |
Oviedo, I. R., Mendez, N. A. N., Gomez, M. P. G., Rodriguez, H. C., and Martinez, A. R. (2008). Design of a physical and nontoxic cross-linked poly(vinyl alcohol) hydrogel. Int. J. Polym. Mater. 57, 1095–1103.
| Design of a physical and nontoxic cross-linked poly(vinyl alcohol) hydrogel.Crossref | GoogleScholarGoogle Scholar |
Pangas, S. A., Saudye, H., Shea, L. D., and Woodruff, T. K. (2003). Novel approach for the three-dimensional culture of granulosa cell–oocyte complexes. Tissue Eng. 9, 1013–1021.
| Novel approach for the three-dimensional culture of granulosa cell–oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlejtLk%3D&md5=f7e67a546f654f585b5df31cdc4d5ad0CAS | 14633385PubMed |
Park, J. I., Hong, J. Y., Yong, H. Y., Hwang, W. S., Lim, J. M., and Lee, E. S. (2005). High oxygen tension during oocyte maturation improves development of porcine oocytes after fertilization. Anim. Reprod. Sci. 87, 133–141.
| High oxygen tension during oocyte maturation improves development of porcine oocytes after fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3ks1Cgsg%3D%3D&md5=5640c8b756779aead9a5636775abdfabCAS | 15885446PubMed |
Parrish, E. M., Siletz, A., Xu, M., Woodruff, T. K., and Shea, L. D. (2011). Gene expression in mouse ovarian follicle development in vivo versus an ex vivo alginate culture system. Reproduction 142, 309–318.
| Gene expression in mouse ovarian follicle development in vivo versus an ex vivo alginate culture system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gs73P&md5=4a423f4b000ad1bf679c338ced503f7cCAS | 21610168PubMed |
Picton, H. M., Harris, S. E., Muruvi, W., and Chambers, E. L. (2008). The in vitro growth and maturation of follicles. Reproduction 136, 703–715.
| The in vitro growth and maturation of follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1CktA%3D%3D&md5=6619365b9664378e035423c637640fc4CAS | 19074213PubMed |
Remminghorst, U., and Rehm, B. H. A. (2006). Bacterial alginates: from biosynthesis to applications. Biotechnol. Lett. 28, 1701–1712.
| Bacterial alginates: from biosynthesis to applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSitLnE&md5=cd51823edc4f56b809403b71c2d1cc78CAS | 16912921PubMed |
Richards, J., Russel, D., Ochsner, S., Hsieh, M., Doyle, K., Falender, A., Lo, Y., and Sharma, S. (2002). Novel signalling pathways that control ovarian follicular development, ovulation and luteinisation. Recent Prog. Horm. Res. 57, 195–220.
| Novel signalling pathways that control ovarian follicular development, ovulation and luteinisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1WqtL4%3D&md5=6e8f8b60ec237aa476b40c0feff3def4CAS | 12017544PubMed |
Risek, B., Guthrie, S., Kumar, N., and Gilula, N. B. (1990). Modulation of gap junction transcript and protein expression during pregnancy in the rat. J. Cell Biol. 110, 269–282.
| Modulation of gap junction transcript and protein expression during pregnancy in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXps1answ%3D%3D&md5=4524fdc0378ed4abee1b10d75c9ee92eCAS | 1688855PubMed |
Rossetto, R., Lima-Verde, I. B., Matos, M. H., Saraiva, M. V. A., Martins, F. S., Faustino, L. R., Araújo, V. R., Silva, C. M., Name, K. P., Campello, C. C., Figueiredo, J. R., and Blume, H. (2009). Interaction between ascorbic acid and follicle-stimulating hormone maintains follicular viability after long-term in vitro culture of caprine preantral follicles. Domest. Anim. Endocrinol. 37, 112–123.
| Interaction between ascorbic acid and follicle-stimulating hormone maintains follicular viability after long-term in vitro culture of caprine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvValu7c%3D&md5=7071f9f769ae53a79cb2f23ccb708fd5CAS | 19493642PubMed |
Rowghani, N. M., Heise, M. K., McKeel, D., McGee, E. A., Koepsel, R. R., and Russell, A. J. (2004). Maintenance of morphology and growth of ovarian follicles in suspension culture. Tissue Eng. 10, 545–552.
| Maintenance of morphology and growth of ovarian follicles in suspension culture.Crossref | GoogleScholarGoogle Scholar | 15165471PubMed |
Roy, S. K., and Greenwald, G. S. (1989). Hormonal requirements for the growth and differentiation of hamster preantral follicles in long-term culture. J. Reprod. Fertil. 87, 103–114.
| Hormonal requirements for the growth and differentiation of hamster preantral follicles in long-term culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvVOktbg%3D&md5=bf08b411fb797cf3a0a605f5ad61bc24CAS | 2621686PubMed |
Roy, S. K., and Greenwald, G. S. (1996). Methods of separation and in vitro culture of preantral follicles from mammalian ovaries. Hum. Reprod. Update 2, 236–245.
| Methods of separation and in vitro culture of preantral follicles from mammalian ovaries.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3jtlahtQ%3D%3D&md5=6acbc52be02f324faa0859ddc78733b4CAS | 9079416PubMed |
Salehi, P., Spratlin, J., Chong, T. F., and Churchill, T. A. (2004). Beneficial effects of supplemental buffer and substrate on energy metabolism during small bowel storage. Cryobiology 48, 245–253.
| Beneficial effects of supplemental buffer and substrate on energy metabolism during small bowel storage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1CntLk%3D&md5=96a5b8d70563129ce74853ab8a4aa83dCAS | 15157773PubMed |
Salinas, C. N., and Anseth, K. S. (2008). The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29, 2370–2377.
| The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlSitrs%3D&md5=58e02b798c7f0359c644f6b9a67563d0CAS | 18295878PubMed |
Salmon, N. A., Handyside, A. H., and Joyce, I. M. (2004). Oocyte regulation of anti-Müllerian hormone expression in granulosa cells during ovarian follicle development in mice. Dev. Biol. 266, 201–208.
| Oocyte regulation of anti-Müllerian hormone expression in granulosa cells during ovarian follicle development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltF2muw%3D%3D&md5=bea51804341ff09f447a0132933b0dbeCAS | 14729489PubMed |
Salustri, A., Yanagishita, M., and Hascall, V. C. (1990). Mouse oocytes regulate hyaluronic acid synthesis and mucification by FSH-stimulated cumulus cells. Dev. Biol. 138, 26–32.
| Mouse oocytes regulate hyaluronic acid synthesis and mucification by FSH-stimulated cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFaisbc%3D&md5=39c26f222182ed71e73fa0aa936d6111CAS | 2155146PubMed |
Sánchez, F., Romero, S., and Smitz, J. (2011). Oocyte and cumulus cell transcripts from cultured mouse follicles are induced to deviate from normal in vivo condition by combinations of insulin, follicle-stimulating hormone and human chorionic gonadotrophin. Biol. Reprod. 85, 565–574.
| Oocyte and cumulus cell transcripts from cultured mouse follicles are induced to deviate from normal in vivo condition by combinations of insulin, follicle-stimulating hormone and human chorionic gonadotrophin.Crossref | GoogleScholarGoogle Scholar | 21565993PubMed |
Sánchez, F., Romero, S., Albuz, F. K., and Smitz, J. (2012). In vitro follicle growth under non-attachment conditions and decreased FSH levels reduces Lhcgr expression in cumulus cells and promotes oocyte developmental competence. J. Assist. Reprod. Genet. 29, 141–152.
| In vitro follicle growth under non-attachment conditions and decreased FSH levels reduces Lhcgr expression in cumulus cells and promotes oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 22190081PubMed |
Sawhney, A. S., Pathak, C. P., and Hubbell, J. A. (1993). Bio-erodible hydrogels based on photopolymerised poly(ethylene glycol)-co-poly(a-hydroxy acid) diacrylate macromers. Macromolecules 26, 581–587.
| Bio-erodible hydrogels based on photopolymerised poly(ethylene glycol)-co-poly(a-hydroxy acid) diacrylate macromers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsFChtb4%3D&md5=379261b5b221ef166e3e2ef11ca9b12cCAS |
Sechi, A. S., and Wehland, J. (2000). The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane. J. Cell Sci. 113, 3685–3695.
| 1:CAS:528:DC%2BD3cXosVGmtL0%3D&md5=5e29c72c92cdee990b2c97ecab22613eCAS | 11034897PubMed |
Shikanov, A., Xu, M., Woodruff, T. K., and Shea, L. D. (2009). Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development. Biomaterials 30, 5476–5485.
| Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFCgtbk%3D&md5=39f795f6d914013fa6a2d4a5c13e18ccCAS | 19616843PubMed |
Shikanov, A., Smith, R. M., Shikanov, A., Xu, M., Woodruff, T. K., and Shea, L. D. (2011a). Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials 32, 2524–2531.
| Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sqs7o%3D&md5=8cb98b136ea13b5538b8338c823569aaCAS | 21247629PubMed |
Shikanov, A., Xu, M., Woodruff, T. K., and Shea, L. D. (2011b). A method for ovarian follicle encapsulation and culture in a proteolytically degradable 3-dimensional system. J. Vis. Exp. 15, pii2695.
Shikanov, A., Zhang, Z., Xu, M., Smith, R. M., Rajan, A., Woodruff, T. K., and Shea, L. D. (2011c). Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice. Tissue Eng. Part A 17, 3095–3104.
| Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKnt7jE&md5=227dfac02a67ea3b96610c16c82adf5cCAS | 21740332PubMed |
Silva, J. R. V. (2005). Growth factors in goat ovaries and the role of activina-A in the development of early-staged follicles. PhD Thesis, Utrecht University, The Netherlands.
Silva, J. R. V., van den Hurk, R., Costa, S. H. F., Andrade, E. R., Nunes, A. P. A., Ferreira, F. V. A., Lôbo, R. N. B., and Figueiredo, J. R. (2004). Survival and growth of goat primordial follicles after in vitro culture of ovarian cortical slices in media containing coconut water. Anim. Reprod. Sci. 81, 273–286.
| Survival and growth of goat primordial follicles after in vitro culture of ovarian cortical slices in media containing coconut water.Crossref | GoogleScholarGoogle Scholar |
Silva, C. M. G., Matos, M. H. T., Rodrigues, G. Q., Faustino, L. R., Pinto, L. C., Chaves, R. N., Araújo, V. R., Campello, C. C., and Figueiredo, J. R. (2010). In vitro survival and development of goat preantral follicles in two different oxygen tensions. Anim. Reprod. Sci. 117, 83–89.
| In vitro survival and development of goat preantral follicles in two different oxygen tensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyjt7nN&md5=6f20c345bdeeea8ae74538a4fd0006c6CAS |
Silva, G. M., Araújo, V. R., Duarte, A. B. G., Chaves, R. N., Silva, C. M. G., Lobo, C. H., Almeida, A. P., Matos, M. H. T., Tavares, L. M. T., Campelo, C. C., and Figueiredo, J. R. (2011). Ascorbic acid improves the survival and in vitro growth of isolated caprine preantral follicles. Anim Reprod 8, 14–24.
Simon, A. M., Goodenough, D. A., Li, E., and Paul, D. L. (1997). Female infertility in mice lacking connexin 37. Nature 385, 525–529.
| Female infertility in mice lacking connexin 37.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFCgtrw%3D&md5=0edcd258022ad2c1d870ca7bbeefe821CAS | 9020357PubMed |
Skjåk-Bræk, G., Murano, E., and Paoletti, S. (1989). Alginate as immobilization material. II: Determination of polyphenol contaminants by fluorescence spectroscopy and evaluation of methods for their removal. Biotechnol. Bioeng. 33, 90–94.
| Alginate as immobilization material. II: Determination of polyphenol contaminants by fluorescence spectroscopy and evaluation of methods for their removal.Crossref | GoogleScholarGoogle Scholar | 18587847PubMed |
Smidsrød, O. (1974). Molecular basis of some physical properties of alginates in the gel state. Faraday Discuss. Chem. Soc. 57, 263–274.
| Molecular basis of some physical properties of alginates in the gel state.Crossref | GoogleScholarGoogle Scholar |
Smidsrød, O., and Skjåk-Bræk, G. (1990). Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71–78.
| Alginate as immobilization matrix for cells.Crossref | GoogleScholarGoogle Scholar | 1366500PubMed |
Songsasen, N., Woodruff, T. K., and Wildt, D. E. (2011). In vitro growth and steroidogenesis of dog follicles are influenced by the physical and hormonal microenvironment. Reproduction 142, 113–122.
| In vitro growth and steroidogenesis of dog follicles are influenced by the physical and hormonal microenvironment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSqu7zI&md5=3ccb40edc829ea764af93ee14de03179CAS | 21502334PubMed |
Soon-Shiong, P., Otterlie, M., Skjåk-Bræk, G., Smidsrød, O., Heintz, R., Lanza, R. P., and Espevik, T. (1991). An immunological basis for the fibrotic reaction to implanted microcapsules. Transplant. Proc. 23, 758–759.
| 1:STN:280:DyaK3M7hvVGhug%3D%3D&md5=24c048fd1e57bbe10c4c1deb76db3b32CAS | 1990681PubMed |
Soon-Shiong, P., Feldman, E., Nelson, R., Komtebedde, J., Smidsrød, O., Skjåk-Bræk, G., Espevik, T., Heintz, R., and Lee, M. (1992). Successful reversal of spontaneous diabetes in dogs by intraperitoneal microencapsulated islets. Transplantation 54, 769–774.
| Successful reversal of spontaneous diabetes in dogs by intraperitoneal microencapsulated islets.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s%2FmvFCktA%3D%3D&md5=45ac6a7448f950615a6c7eddc2220737CAS | 1440841PubMed |
Su, Y. Q., Sugiura, K., and Eppig, J. J. (2009). Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin. Reprod. Med. 27, 32–42.
| Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVGntr0%3D&md5=5fc64ae171d24a88e687a8d6e3f2e036CAS | 19197803PubMed |
Sutovsky, P. (1993). Dynamic changes of gap junctions and cytoskeleton during in vitro culture of cattle oocyte cumulus complexes. Biol. Reprod. 49, 1277–1287.
| Dynamic changes of gap junctions and cytoskeleton during in vitro culture of cattle oocyte cumulus complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslKr&md5=5c19236fe48c9a06dbdade2324d1f53eCAS | 8286609PubMed |
Sutton, M. L., Gilchrist, R. B., and Thompson, J. G. (2003). Effects of in vivo and in vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update 9, 35–48.
| Effects of in vivo and in vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVelt7Y%3D&md5=754fe198543d4fd5e4858d302ae5fb74CAS | 12638780PubMed |
Tagler, D., Tu, T., Smith, R. M., Anderson, N. R., Tingen, C. M., Woodruff, T. K., and Shea, L. D. (2012). Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels. Tissue Eng. Part A 18, 1229–1238.
| Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVOisLg%3D&md5=07b6c5d0ae767abcc87b6d2206d00ef5CAS | 22296562PubMed |
Tanaka, H., Matsumura, M., and Veliky, I. A. (1984). Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol. Bioeng. 26, 53–58.
| Diffusion characteristics of substrates in Ca-alginate gel beads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXosVahsw%3D%3D&md5=9546fd8bcf2ea4f62bf69a93d39f381bCAS | 18551586PubMed |
Thomson, R. C., Mikos, A. G., Beahm, E., Lemon, J. C., Satterfield, W. C., Aufdemorte, T. B., and Miller, M. J. (1999). Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds. Biomaterials 20, 2007–2018.
| Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVyitbY%3D&md5=ae8e8babf666158f466a339025637e6eCAS | 10535812PubMed |
Thu, B., Smidsrød, O., and Skjåk-Bræk, G. (1996). Alginate gels – some structure–function correlations relevant to their use as immobilization matrix for cells. In ‘Immobilized Cells – Basics and Applications. Vol. 11’. (Eds R. H. Wijffels, R. M. Buitelaar, C. Bucke and J. Tramper.) pp. 19–30. (Elsevier Science: Amsterdam, NL.)
Tingen, C., Kim, A., and Woodruff, T. K. (2009). The primordial pool of follicles and nest breakdown in mammalian ovaries. Mol. Hum. Reprod. 15, 795–803.
| The primordial pool of follicles and nest breakdown in mammalian ovaries.Crossref | GoogleScholarGoogle Scholar | 19710243PubMed |
Vaccari, S., Weeks, J. L., Hsieh, M., Menniti, F. S., and Conti, M. (2009). Cyclic GMP signalling is involved in the LH-dependent meiotic maturation of mouse oocytes. Biol. Reprod. 81, 595–604.
| Cyclic GMP signalling is involved in the LH-dependent meiotic maturation of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7zE&md5=0611af026eed3a75f781972036f3107fCAS | 19474061PubMed |
Vanacker, J., Luyckx, V., Dolmans, M. M., Des Rieux, A., Jaeger, J., Van Langendonckt, A., Donnez, J., and Amorim, C. A. (2012). Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials 33, 6079–6085.
| Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVylu74%3D&md5=d812803c73ed1c00270787900b6b9423CAS | 22658800PubMed |
van den Hurk, R., and Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63, 1717–1751.
| Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2js70%3D&md5=56683dd8b547bb2c8938b5d79b9dfdd8CAS | 15763114PubMed |
Vanderhyden, B. C., and Tonary, A. M. (1995). Differential regulation of progesterone and oestradiol production by mouse cumulus and mural granulosa cells by a factor(s) secreted by the oocyte. Biol. Reprod. 53, 1243–1250.
| Differential regulation of progesterone and oestradiol production by mouse cumulus and mural granulosa cells by a factor(s) secreted by the oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVejurk%3D&md5=60a1b862614a11c6acb6f7ff4f786e11CAS | 8562677PubMed |
Wang, N. C., Butler, J. P., and Ingber, D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127.
| Mechanotransduction across the cell surface and through the cytoskeleton.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3mt1Clsw%3D%3D&md5=da377be7de4b793c8030782c8d816aacCAS |
Webb, R., Nicholas, B., Gong, J. G., Campbell, B. K., Gutierrez, C. G., Garverick, H. A., and Armstrong, D. G. (2003). Mechanisms regulating follicular development and selection of the dominant follicle. Reprod. Suppl. 61, 71–90.
| 1:CAS:528:DC%2BD3sXptFKhsLs%3D&md5=cdca7444252f75437f238e050baf2501CAS | 14635928PubMed |
West, E. R., Shea, L. D., and Woodruff, T. K. (2007a). Engineering the follicle microenvironment. Semin. Reprod. Med. 25, 287–299.
| Engineering the follicle microenvironment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXoslGksLw%3D&md5=e9867159099a065d958df48dbcac5670CAS | 17594609PubMed |
West, E. R., Xu, M., Woodruff, T. K., and Shea, L. D. (2007b). Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28, 4439–4448.
| Physical properties of alginate hydrogels and their effects on in vitro follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSqtr4%3D&md5=f82b72130841c21e36b29287ad8c5f84CAS | 17643486PubMed |
West-Farrell, E. R., Xu, M., Gomberg, M. A., Chow, Y. H., Woodruff, T. K., and Shea, L. D. (2009). The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol. Reprod. 80, 432–439.
| The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1amtL4%3D&md5=c7b1c325775754e6e515a8e2695ede36CAS | 19005169PubMed |
Woodruff, T. K., and Shea, L. D. (2007). The role of the extracellular matrix in ovarian follicle development. Reprod. Sci. 14, 6–10.
| The role of the extracellular matrix in ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 18089604PubMed |
Woodruff, T. K., and Shea, L. D. (2011). A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. J. Assist. Reprod. Genet. 28, 3–6.
| A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health.Crossref | GoogleScholarGoogle Scholar | 20872066PubMed |
Wycherley, G., Downey, D., Kane, M. T., and Hynes, A. C. (2004). A novel follicle culture system markedly increases follicle volume, cell number and oestradiol secretion. Reproduction 127, 669–677.
| A novel follicle culture system markedly increases follicle volume, cell number and oestradiol secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Ohu7w%3D&md5=01df7668b501d335ac2870a157dd9b57CAS | 15175503PubMed |
Xu, M., Kreeger, P. K., Shea, L. D., and Woodruff, T. K. (2006a). Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 12, 2739–2746.
| Tissue-engineered follicles produce live, fertile offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSht7fF&md5=6e5b5e9bcf061e1d1e521ab717d05aeaCAS | 17518643PubMed |
Xu, M., West, E., Shea, L. D., and Woodruff, T. K. (2006b). Identification of a stage-specific permissive in vitro-culture environment for follicle growth and oocyte development. Biol. Reprod. 75, 916–923.
| Identification of a stage-specific permissive in vitro-culture environment for follicle growth and oocyte development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjtr7O&md5=e992a3bd697a75b47decc6f87fc0f142CAS | 16957022PubMed |
Xu, M., Banc, A., Woodruff, T. K., and Shea, L. D. (2009a). Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol. Bioeng. 103, 378–386.
| Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVClurs%3D&md5=3ee0e56e850323cbffd710b79258033cCAS | 19191350PubMed |
Xu, M., Barrett, S. L., West-Farrell, E., Kondapalli, L. A., Kiesewette, S. E., Shea, L. D., and Woodruff, T. K. (2009b). In vitro-grown human ovarian follicles from cancer patients support oocyte growth. Hum. Reprod. 24, 2531–2540.
| In vitro-grown human ovarian follicles from cancer patients support oocyte growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOqurnE&md5=33950112c8b9eba1674837e2be125545CAS | 19597190PubMed |
Xu, M., West-Farrell, E. R., Stouffer, R. L., Shea, L. D., Woodruff, T. K., and Zelinski, M. B. (2009c). Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol. Reprod. 81, 587–594.
| Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7zL&md5=14dfde046d3b8e06cb1af4c9d240d0abCAS | 19474063PubMed |
Xu, J., Bernuci, M. P., Lawson, M. S., Yeoman, R. R., Fisher, T. E., Zelinski, M. B., and Stouffer, R. L. (2010). Survival, growth and maturation of secondary follicles from pre-pubertal, young and older adult rhesus monkeys during encapsulated three-dimensional (3D) culture: effects of gonadotrophins and insulin. Reproduction 140, 685–697.
| Survival, growth and maturation of secondary follicles from pre-pubertal, young and older adult rhesus monkeys during encapsulated three-dimensional (3D) culture: effects of gonadotrophins and insulin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCnsbfK&md5=5f3d43e0195dcd54d0abda6a829fdbdbCAS | 20729335PubMed |
Xu, J., Lawson, M. S., Yeoman, R. R., Pau, K. Y., Barrett, S. L., Zelinski, M. B., and Stouffer, R. L. (2011). Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin. Hum. Reprod. 26, 1061–1072.
| Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltleht7c%3D&md5=261f08d60b253ff84779bab9499df838CAS | 21362681PubMed |
Xu, X., Jha, A. K., Harrington, D. A., Farach-Carson, M. C., and Jia, X. (2012). Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8, 3280–3294.
| Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVGjtLs%3D&md5=7171ab05557df633d67a8eb101e066d9CAS | 22419946PubMed |
Yang, H., and Wright, J. R. (1999). Calcium alginate. In ‘Cell Encapsulation Technology and Therapeutics’. (Eds W. M. Kuhtreiber, R. P. Lanza and W. L. Chick.) pp. 79–89. (Birkhauser: Boston.)
Yaseen, M. A., Wrenzycki, C., Herrmann, D., Carnwath, J. W., and Niemann, H. (2001). Changes in the relative abundance of mRNA transcripts for insulin-like growth factor (IGF-I and IGF-II) ligands and their receptors (IGF-IR/IGFIIR) in preimplantation bovine embryos derived from different in vitro systems. Reproduction 122, 601–610.
| Changes in the relative abundance of mRNA transcripts for insulin-like growth factor (IGF-I and IGF-II) ligands and their receptors (IGF-IR/IGFIIR) in preimplantation bovine embryos derived from different in vitro systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFGlur8%3D&md5=00f1a05be647a1e1cf221b18df24563cCAS | 11570968PubMed |
Ye, J., Coleman, J., Hunter, M. G., Craigon, J., Campbell, K. H., and Luck, M. R. (2007). Physiological temperature variants and culture media modify meiotic progression and developmental potential of pig oocytes in vitro. Reproduction 133, 877–886.
| Physiological temperature variants and culture media modify meiotic progression and developmental potential of pig oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlGnurc%3D&md5=2f1f6845c1d30be59537e9119ddafa8aCAS | 17616718PubMed |
Zhang, S., Zhao, X., and Spirio, L. (2005) Pura Matrix: self-assembling peptide nanofiber scaffolds. In ‘Scaffolding in Tissue Engineering’. (Eds P. X. Ma and J. Elisseeff.) pp. 217–238. (CRC Press: Boca Raton, FL, USA.)
Zhao, Y., Chauvet, P. J.-P., Alper, S. L., and Baltz, J. M. (1995). Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J. Biol. Chem. 270, 24 428–24 434.
| Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovVSnsr8%3D&md5=2479824da4add6318ae7b1abc711b981CAS |
Zimmermann, U. (1999). Biocompatible encapsulation materials: fundamentals and application. In ‘Cell Encapsulation Technology and Therapeutics’. (Eds W. M. Kuhtreiber, R. P. Lanza and W. L. Chick.) pp. 40–52. (Birkhauser: Boston.)