Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Altered endometrial immune gene expression in beef heifers with retarded embryos

M. E. Beltman A D , N. Forde B , P. Lonergan B C and M. A. Crowe A C
+ Author Affiliations
- Author Affiliations

A School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.

B School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.

C Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.

D Corresponding author. Email: marijke.beltman@ucd.ie

Reproduction, Fertility and Development 25(6) 966-970 https://doi.org/10.1071/RD12232
Submitted: 27 May 2012  Accepted: 28 August 2012   Published: 4 October 2012

Abstract

The aim of the present study was to compare endometrial gene expression profiles in a group of beef heifers yielding viable or retarded embryos on Day 7 after oestrus as a means of potentially explaining differences in embryo survival rates. Heifers were classified as either: (1) viable, when the embryo collected on Day 7 after oestrus was at the correct developmental stage (i.e. morula/early blastocyst); or (2) retarded, when the embryo was arrested at the 2–16-cell stage. The focus of the present study was on genes that were associated with either the pro- or anti-inflammatory immune response. Endometrial gene expression was determined using quantitative real-time polymerase chain reaction analysis. Expression of the β-defensin (DEFB1), interferon (IFN)-α (IFNA), IFN-γ (IFNG), interleukin (IL)-6 (IL6), IL-10 (IL10), forkhead box P3 (FOXP3) and natural cytotoxicity triggering receptor 1 (NCR1) genes was lower in endometria from viable than retarded heifers. Expression of the nuclear factor of kappa light polypeptide gene enhancer in B cells 1 (NKFB1), transforming growth factor (TGF)-β (TGFB), IFN-γ-inducible protein 16 (IFI16) and IL-21 (IL21) genes was higher in viable than retarded heifers. We propose that small disturbances in the expression of immune genes in the endometrium on Day 7 after oestrus can have detrimental effects on embryo survival.

Additional keywords : anti-inflammatory, embryo development, pre-implantation, pro-inflammatory, uterus.


References

Bauersachs, S., Ulbrich, S. E., Zakhartchenko, V., Minten, M., Reichenbach, M., Reichenbach, H.-D., Blum, H., Spencer, T. E., and Wolf, E. (2009). The endometrium responds differently to cloned versus fertilized embryos. Proc. Natl. Acad. Sci. USA 106, 5681–5686.
The endometrium responds differently to cloned versus fertilized embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurk%3D&md5=051e04fdc18c3748867ca4da6a783b7bCAS | 19307558PubMed |

Bauersachs, S., Ulbrich, S. E., Reichenbach, H.-D., Reichenbach, M., Büttner, M., Meyer, H. H. D., Spencer, T. E., Minten, M., Sax, G., Winter, G., and Wolf, E. (2012). Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium. Biol. Reprod. 86, 1–15.
Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium.Crossref | GoogleScholarGoogle Scholar |

Beltman, M. E., Forde, N., Furney, P., Carter, F., Roche, J. F., Lonergan, P., and Crowe, M. A. (2010). Characterisation of endometrial gene expression and metabolic parameters in beef heifers yielding viable or non-viable embryos on Day 7 after insemination. Reprod. Fertil. Dev. 22, 987–999.
Characterisation of endometrial gene expression and metabolic parameters in beef heifers yielding viable or non-viable embryos on Day 7 after insemination.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnjvFOksA%3D%3D&md5=df86a9a8bef3c03c85a262ffdec72be5CAS | 20591333PubMed |

Chapwanya, A., Meade, K. G., Doherty, M. L., Callanan, J. J., Mee, J. F., and O’Farrelly, C. (2009). Histopathological and molecular evaluation of Holstein–Friesian cows postpartum: toward an improved understanding of uterine innate immunity. Theriogenology 71, 1396–1407.
Histopathological and molecular evaluation of Holstein–Friesian cows postpartum: toward an improved understanding of uterine innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltl2murw%3D&md5=99cc2e0aeeb7b2fc813ffcac2bd4717eCAS | 19233457PubMed |

Eckersall, P. D., and Bell, R. (2010). Acute phase proteins: biomarkers of infection and inflammation in veterinary medicine. Vet. J. 185, 23–27.
Acute phase proteins: biomarkers of infection and inflammation in veterinary medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVaqs7c%3D&md5=e5a6b28956fc82989b59a36b43c1ac76CAS | 20621712PubMed |

Forde, N., Spencer, T. E., Bazer, F. W., Song, G., Roche, J. F., and Lonergan, P. (2010). Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium. Physiol. Genomics 41, 53–62.
Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt7jN&md5=72dbde56303e12b95050e4ea9f597349CAS | 19996158PubMed |

Forde, N., Carter, F., Spencer, T. E., Bazer, F. W., Sandra, O., Mansouri-Attia, N., Okumu, L. A., McGettigan, P. A., Mehta, J. P., McBride, R., O’Gaora, P., Roche, J. F., and Lonergan, P. (2011). Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biol. Reprod. 85, 144–156.
Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOlsL4%3D&md5=a2cf07cbd83b8718095708fb15073c45CAS | 21349821PubMed |

Hansen, P. J. (1997). Interactions between the immune system and the bovine conceptus. Theriogenology 47, 121–130.
Interactions between the immune system and the bovine conceptus.Crossref | GoogleScholarGoogle Scholar |

Hansen, P. J. (2011). The immunology of early pregnancy in farm animals. Reprod. Domest. Anim. 46, 18–30.
| 21854458PubMed |

Hansen, P. J., Soto, P., and Natzke, R. P. (2004). Mastitis and fertility in cattle: possible involvement of inflammation or immune activation in embryonic mortality. Am. J. Reprod. Immunol. 51, 294–301.
Mastitis and fertility in cattle: possible involvement of inflammation or immune activation in embryonic mortality.Crossref | GoogleScholarGoogle Scholar | 15212683PubMed |

Leung, S., Derecka, K., Mann, G., Flint, A., and Wathes, D. (2000). Uterine lymphocyte distribution and interleukin expression during early pregnancy in cows. J. Reprod. Fertil. 119, 25–33.
| 1:CAS:528:DC%2BD3cXjsF2ju74%3D&md5=9927193d6d8c407770f0e870e416aa45CAS | 10864810PubMed |

Lin, H., Mosmann, T., Guilbert, L., Tuntipopipat, S., and Wegmann, T. (1993). Synthesis of T helper 2-type cytokines at the maternal–fetal interface. J. Immunol. 151, 4562–4573.
| 1:CAS:528:DyaK2cXmsFKj&md5=8535a8b96624b9808030bda1e2b1a565CAS | 8409418PubMed |

Low, B. G., Hansen, P. J., Drost, M., and Gogolin-Ewens, K. J. (1990). Expression of major histocompatibility complex antigens on the bovine placenta. J. Reprod. Fertil. 90, 235–243.
Expression of major histocompatibility complex antigens on the bovine placenta.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2FjvFSmtA%3D%3D&md5=f0b341b562cefb3fc926c48629c14ef5CAS | 2231545PubMed |

Maley, S. W., Buxton, D., Macaldowie, C. N., Anderson, I. E., Wright, S. E., Bartley, P. M., Esteban-Redondo, I., Hamilton, C. M., Storset, A. K., and Innes, E. A. (2006). Characterization of the immune response in the placenta of cattle experimentally infected with Neospora caninum in early gestation. J. Comp. Pathol. 135, 130–141.
Characterization of the immune response in the placenta of cattle experimentally infected with Neospora caninum in early gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFSisb8%3D&md5=fc2bcd722057217acd51f278b5a2bacaCAS | 16997005PubMed |

Mansouri-Attia, N., Aubert, J., Reinaud, P., Giraud-Delville, C., Taghouti, G., Galio, L., Everts, R. E., Richard, C., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., Renard, J.-P., and Sandra, O. (2009). Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation Physiol. Genomics 39, 14–27.
Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt7rM&md5=098db221572bb0da85c578e106f8034cCAS | 19622795PubMed |

Snedecor, G. W., and Cochran, W. G. 1989. ‘Statistical Methods.’ (Iwoa State University Press: Ames, IA.)

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, research00034–research0034.11.
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Crossref | GoogleScholarGoogle Scholar |

Walker, C. G., Meier, S., Littlejohn, M. D., Lehnert, K., Roche, J. R., and Mitchell, M. D. (2010). Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics 11, 474.
Modulation of the maternal immune system by the pre-implantation embryo.Crossref | GoogleScholarGoogle Scholar | 20707927PubMed |

Zeng, W.-P., Sollars, V. E., and Belalcazar, A. D. P. (2011). Domain requirements for the diverse immune regulatory functions of foxp3. Mol. Immunol. 48, 1932–1939.
Domain requirements for the diverse immune regulatory functions of foxp3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVygs7rK&md5=b5e4124a2965889f38199e7d38a997a0CAS | 21737139PubMed |

Zhou, L., Lopes, J. E., Chong, M. M. W., Ivanov, I. I., Min, R., Victora, G. D., Shen, Y., Du, J., Rubtsov, Y. P., Rudensky, A. Y., Ziegler, S. F., and Littman, D. R. (2008). TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240.
TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12msL4%3D&md5=1344ffc9c9e8a0dac9ba0f9abb836c72CAS | 18368049PubMed |