Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of spermatozoa–oviductal cell coincubation time and oviductal cell age on spermatozoa–oviduct interactions

Ahmed Aldarmahi A , Sarah Elliott A , Jean Russell B and Alireza Fazeli A C
+ Author Affiliations
- Author Affiliations

A Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK.

B Corporate and Computing Services, University of Sheffield, Sheffield S3 7RF, UK.

C Corresponding author. Email: a.fazeli@sheffield.ac.uk

Reproduction, Fertility and Development 26(2) 358-365 https://doi.org/10.1071/RD12222
Submitted: 10 July 2012  Accepted: 30 January 2013   Published: 4 April 2013

Abstract

The oviduct plays a crucial role in sperm storage, maintenance of sperm viability and sperm transport to the site of fertilisation. The aim of the present study was to investigate the effects of oviductal cell culture passage number, oviductal cell age and spermatozoa–oviduct coincubation times on gene expression in oviductal cells. Immortalised oviductal epithelial cells (OPEC) obtained from two different cell passages (36 and 57) were subcultured three times with and without spermatozoa for 24 h (control group). In a second study, OPEC were cocultured with spermatozoa for different time intervals (0, 4, 12 and 24 h). Expression of adrenomedullin (ADM), heat shock 70 kDa protein 8 (HSPA8) and prostaglandin E synthase (PGES) in OPEC was measured by quantitative polymerase chain reaction. The expression of ADM and HSPA8 was decreased significantly in OPEC cells from Passage 57, particularly in the later subculture group. These effects on HSPA8, but not ADM, expression in OPEC were further altered after coculture with spermatozoa for 24 h. We also demonstrated that spermatozoa–oviduct coculture for 12 and 24 h resulted in significantly higher expression of ADM, HSPA8 and PGES in OPEC. Overall, the data suggest that the OPEC lose some of their properties as a result of oviductal cell aging and that there are spermatozoa–oviduct interactions leading to increased oviductal cell gene expression.

Additional keywords: immortalised epithelial cells, in vitro culture, real-time polymerase chain reaction, spermatozoa.


References

Aldarmahi, A., Elliott, S., Russell, J., Klonisch, T., Hombach-Klonisch, S., and Fazeli, A. (2012). Characterisation of an in vitro system to study maternal communication with spermatozoa. Reprod. Fertil. Dev. 24, 988–998.
Characterisation of an in vitro system to study maternal communication with spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Grs7vP&md5=9fc7300090dbcec41fed3abc29981f1bCAS | 22935160PubMed |

Bongso, A., Ng, S. C., Sathananthan, H., Ng, P. L., Rauff, M., and Ratnam, S. S. (1989). Establishment of human ampullary cell cultures. Hum. Reprod. 4, 486–494.
| 1:STN:280:DyaK3c%2FgvFansw%3D%3D&md5=ce4b814380e314cf65444afbef91dd5fCAS | 2794010PubMed |

Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., and Wittwer, C. T. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622.
The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWqs7g%3D&md5=540b071d42e66eb1d74d96cb642fb4e1CAS | 19246619PubMed |

Chang-Liu, C. M., and Woloschak, G. E. (1997). Effect of passage number on cellular response to DNA-damaging agents: cell survival and gene expression. Cancer Lett. 113, 77–86.
Effect of passage number on cellular response to DNA-damaging agents: cell survival and gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1Khsb8%3D&md5=d9c986ff58dfeede5a779f299ff09f48CAS | 9065805PubMed |

Ebers, K. L., Zhang, C. Y., Zhang, M. Z., Bailey, R. H., and Zhang, S. (2009). Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar Enteritidis. BMC Microbiol. 9, 153.
Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar Enteritidis.Crossref | GoogleScholarGoogle Scholar | 19642979PubMed |

Fazeli, A., Duncan, A. E., Watson, P. F., and Holt, W. V. (1999). Sperm–oviduct interaction: induction of capacitation and preferential binding of uncapacitated spermatozoa to oviductal epithelial cells in porcine species. Biol. Reprod. 60, 879–886.
Sperm–oviduct interaction: induction of capacitation and preferential binding of uncapacitated spermatozoa to oviductal epithelial cells in porcine species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVGru7k%3D&md5=15a0627e8744591789e1523310c67240CAS | 10084961PubMed |

Fazeli, A., Affara, N. A., Hubank, M., and Holt, W. V. (2004). Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice. Biol. Reprod. 71, 60–65.
Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKktLY%3D&md5=b8610d8dfad0899ffa343262cbc678a3CAS | 14973272PubMed |

Georgiou, A. S., Snijders, A. P., Sostaric, E., Aflatoonian, R., Vazquez, J. L., Vazquez, J. M., Roca, J., Martinez, E. A., Wright, P. C., and Fazeli, A. (2007). Modulation of the oviductal environment by gametes. J. Proteome Res. 6, 4656–4666.
Modulation of the oviductal environment by gametes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWmu73O&md5=8fa3c4314ecb940b90356ab83af6ff42CAS | 18004800PubMed |

Green, C. E., Bredl, J., Holt, W. V., Watson, P. F., and Fazeli, A. (2001). Carbohydrate mediation of boar sperm binding to oviductal epithelial cells in vitro. Reproduction 122, 305–315.
Carbohydrate mediation of boar sperm binding to oviductal epithelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFWjtb0%3D&md5=b67ad09c348fb1e135e379d2952fe029CAS | 11467982PubMed |

Harrison, R. A. (1976). A highly efficient method for washing mammalian spermatozoa. J. Reprod. Fertil. 48, 347–353.
A highly efficient method for washing mammalian spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s%2FltlKksA%3D%3D&md5=8b2790421e803d06a4f23f37dd7e89afCAS | 994106PubMed |

Hombach-Klonisch, S., Pocar, P., Kauffold, J., and Klonisch, T. (2006). Dioxin exerts anti-estrogenic actions in a novel dioxin-responsive telomerase-immortalized epithelial cell line of the porcine oviduct (TERT-OPEC). Toxicol. Sci. 90, 519–528.
Dioxin exerts anti-estrogenic actions in a novel dioxin-responsive telomerase-immortalized epithelial cell line of the porcine oviduct (TERT-OPEC).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Ons7k%3D&md5=38a3f5b391f79eecabd7f66cd7402699CAS | 16431846PubMed |

Hunter, F. M., and Birkhead, T. R. (2002). Sperm viability and sperm competition in insects. Curr. Biol. 12, 121–123.
Sperm viability and sperm competition in insects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVKru7s%3D&md5=882dc078a99e7274dabba3eff5dfbd9bCAS | 11818062PubMed |

Hunter, R. H. (1981). Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation. J. Reprod. Fertil. 63, 109–117.
Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL38%2FhtVeqtA%3D%3D&md5=6f133cf739c239d42cd2cc02949c54c8CAS | 6895091PubMed |

Hunter, R. H., and Nichol, R. (1983). Transport of spermatozoa in the sheep oviduct: preovulatory sequestering of cells in the caudal isthmus. J. Exp. Zool. 228, 121–128.
Transport of spermatozoa in the sheep oviduct: preovulatory sequestering of cells in the caudal isthmus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c7htlCjtw%3D%3D&md5=ef8131a544de494cdff00f956427160bCAS | 6663251PubMed |

Kervancioglu, M. E., Djahanbakhch, O., and Aitken, R. J. (1994). Epithelial cell coculture and the induction of sperm capacitation. Fertil. Steril. 61, 1103–1108.
| 1:STN:280:DyaK2c3lt1Cgsg%3D%3D&md5=b6d55fd5e5ad8973cb5f353a1f7a805cCAS | 8194625PubMed |

Kodithuwakku, S. P., Miyamoto, A., and Wijayagunawardane, M. P. (2007). Spermatozoa stimulate prostaglandin synthesis and secretion in bovine oviductal epithelial cells. Reproduction 133, 1087–1094.
Spermatozoa stimulate prostaglandin synthesis and secretion in bovine oviductal epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGnu7Y%3D&md5=e06579204d199c8da22f3acb4c9b14d5CAS | 17636163PubMed |

Lee, K. F., Chow, J. F., Xu, J. S., Chan, S. T., Ip, S. M., and Yeung, W. S. (2001). A comparative study of gene expression in murine embryos developed in vivo, cultured in vitro, and cocultured with human oviductal cells using messenger ribonucleic acid differential display. Biol. Reprod. 64, 910–917.
A comparative study of gene expression in murine embryos developed in vivo, cultured in vitro, and cocultured with human oviductal cells using messenger ribonucleic acid differential display.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtrY%3D&md5=49b3d26e976ac803776bd74249afa514CAS | 11207208PubMed |

Lee, K. F., Yao, Y. Q., Kwok, K. L., Xu, J. S., and Yeung, W. S. (2002). Early developing embryos affect the gene expression patterns in the mouse oviduct. Biochem. Biophys. Res. Commun. 292, 564–570.
Early developing embryos affect the gene expression patterns in the mouse oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFeitL8%3D&md5=877afebe0234d6047570b25b0db26e7eCAS | 11906198PubMed |

Li, H. W., Liao, S. B., Chiu, P. C., Tam, W. W., Ho, J. C., Ng, E. H., Ho, P. C., Yeung, W. S., Tang, F., and O, W. S. (2010). Expression of adrenomedullin in human oviduct, its regulation by the hormonal cycle and contact with spermatozoa, and its effect on ciliary beat frequency of the oviductal epithelium. J. Clin. Endocrinol. Metab. 95, E18–E25.
Expression of adrenomedullin in human oviduct, its regulation by the hormonal cycle and contact with spermatozoa, and its effect on ciliary beat frequency of the oviductal epithelium.Crossref | GoogleScholarGoogle Scholar | 20534761PubMed |

Lin, C. Y., Strom, A., Li Kong, S., Kietz, S., Thomsen, J. S., Tee, J. B., Vega, V. B., Miller, L. D., Smeds, J., Bergh, J., Gustafsson, J. A., and Liu, E. T. (2007). Inhibitory effects of estrogen receptor beta on specific hormone-responsive gene expression and association with disease outcome in primary breast cancer. Breast Cancer Res. 9, R25.
Inhibitory effects of estrogen receptor beta on specific hormone-responsive gene expression and association with disease outcome in primary breast cancer.Crossref | GoogleScholarGoogle Scholar | 17428314PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=9cad4ff7133d540452bb50aaaa4ededfCAS | 11846609PubMed |

Menezo, Y., and Guerin, P. (1997). The mammalian oviduct: biochemistry and physiology. Eur. J. Obstet. Gynecol. Reprod. Biol. 73, 99–104.
The mammalian oviduct: biochemistry and physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslemtLg%3D&md5=9c604c0ed7f94eee95d5246b043bf06eCAS | 9175697PubMed |

Morales, P., Palma, V., Salgado, A. M., and Villalon, M. (1996). Sperm interaction with human oviductal cells in vitro. Hum. Reprod. 11, 1504–1509.
Sperm interaction with human oviductal cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zisVKqtw%3D%3D&md5=ea069517b51fada8ec65303fd7988966CAS | 8671493PubMed |

Mulholland, J., Winterhager, E., and Beier, H. M. (1988). Changes in proteins synthesized by rabbit endometrial epithelial cells following primary culture. Cell Tissue Res. 252, 123–132.
Changes in proteins synthesized by rabbit endometrial epithelial cells following primary culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Gnsro%3D&md5=12bc1da4d67902c05c5e4545bc383d56CAS | 3378256PubMed |

Neumann, E., Riepl, B., Knedla, A., Lefevre, S., Tarner, I. H., Grifka, J., Steinmeyer, J., Scholmerich, J., Gay, S., and Muller-Ladner, U. (2010). Cell culture and passaging alters gene expression pattern and proliferation rate in rheumatoid arthritis synovial fibroblasts. Arthritis Res. Ther. 12, R83.
Cell culture and passaging alters gene expression pattern and proliferation rate in rheumatoid arthritis synovial fibroblasts.Crossref | GoogleScholarGoogle Scholar | 20462438PubMed |

Parrish, J. J., Susko-Parrish, J., Winer, M. A., and First, N. L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod. 38, 1171–1180.
Capacitation of bovine sperm by heparin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkslWit7g%3D&md5=b29a8be059be8768df05d3950d54d736CAS | 3408784PubMed |

Pursel, V. G., and Johnson, L. A. (1975). Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and a new thawing procedure. J. Anim. Sci. 40, 99–102.
| 1:STN:280:DyaE2M%2FnslCjtw%3D%3D&md5=64a08be65961983b91263161a1d1a8deCAS | 1110222PubMed |

Rodriguez-Martinez, H. (2007). Role of the oviduct in sperm capacitation. Theriogenology 68, S138–S146.
Role of the oviduct in sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitLY%3D&md5=2d98f45c68d1b3d8a622bff48d0971aeCAS | 17452049PubMed |

Scott, M. A. (2000). A glimpse at sperm function in vivo: sperm transport and epithelial interaction in the female reproductive tract. Anim. Reprod. Sci. 60–61, 337–348.
A glimpse at sperm function in vivo: sperm transport and epithelial interaction in the female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 10844205PubMed |

Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W., and Blenis, J. (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol. Cell 38, 114–127.
ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFynsbY%3D&md5=c8074ca22f7cdda47497228bfdb3a554CAS | 20385094PubMed |

Suarez, S. S. (2002). Formation of a reservoir of sperm in the oviduct. Reprod. Domest. Anim. 37, 140–143.
Formation of a reservoir of sperm in the oviduct.Crossref | GoogleScholarGoogle Scholar | 12071887PubMed |

Thibodeaux, J. K., Myers, M. W., Goodeaux, L. L., Menezo, Y., Roussel, J. D., Broussard, J. R., and Godke, R. A. (1992). Evaluating an in vitro culture system of bovine uterine and oviduct epithelial cells for subsequent embryo co-culture. Reprod. Fertil. Dev. 4, 573–583.
Evaluating an in vitro culture system of bovine uterine and oviduct epithelial cells for subsequent embryo co-culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3jsVyhsA%3D%3D&md5=098d548f21fef11209deeee92edbb205CAS | 1299832PubMed |

Topfer-Petersen, E. (1999). Carbohydrate-based interactions on the route of a spermatozoon to fertilization. Hum. Reprod. Update 5, 314–329.
Carbohydrate-based interactions on the route of a spermatozoon to fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVKjtbY%3D&md5=c545061923e05ba331278eda573c4f8eCAS | 10465523PubMed |

Ulbrich, S. E., Zitta, K., Hiendleder, S., and Wolf, E. (2010). In vitro systems for intercepting early embryo–maternal cross-talk in the bovine oviduct. Theriogenology 73, 802–816.
In vitro systems for intercepting early embryo–maternal cross-talk in the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFGltr0%3D&md5=d9905d2d367e7a6fed98b01373224371CAS | 19963260PubMed |

Umezu, T., Hanazono, M., Aizawa, S., and Tomooka, Y. (2003). Characterization of newly established clonal oviductal cell lines and differential hormonal regulation of gene expression. In Vitro Cell. Dev. Biol. Anim. 39, 146–156.
| 1:CAS:528:DC%2BD3sXotlyksLc%3D&md5=6f930d43ec9cbb46b97c2045bc5c6935CAS | 14505432PubMed |

Wagner, A., Ekhlasi-Hundrieser, M., Hettel, C., Petrunkina, A., Waberski, D., Nimtz, M., and Topfer-Petersen, E. (2002). Carbohydrate-based interactions of oviductal sperm reservoir formation–studies in the pig. Mol. Reprod. Dev. 61, 249–257.
Carbohydrate-based interactions of oviductal sperm reservoir formation–studies in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Giuw%3D%3D&md5=5048be4e228bc654532118ebe4eb71e3CAS | 11803561PubMed |

Wenger, S. L., Senft, J. R., Sargent, L. M., Bamezai, R., Bairwa, N., and Grant, S. G. (2004). Comparison of established cell lines at different passages by karyotype and comparative genomic hybridization. Biosci. Rep. 24, 631–639.
Comparison of established cell lines at different passages by karyotype and comparative genomic hybridization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFOksLk%3D&md5=a24a69d1c4b6a3c42736b5b198cebfb5CAS | 16158200PubMed |

Winer, J., Jung, C. K., Shackel, I., and Williams, P. M. (1999). Development and validation of real-time quantitative reverse transcriptase–polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270, 41–49.
Development and validation of real-time quantitative reverse transcriptase–polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVersr0%3D&md5=d4f353b2c700cd9549ced42ae1d28bfdCAS | 10328763PubMed |

Yu, H., Cook, T. J., and Sinko, P. J. (1997). Evidence for diminished functional expression of intestinal transporters in Caco-2 cell monolayers at high passages. Pharm. Res. 14, 757–762.
Evidence for diminished functional expression of intestinal transporters in Caco-2 cell monolayers at high passages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1yit7Y%3D&md5=a417f53ecdc2f0f151ed77f2e7cdbe31CAS | 9210193PubMed |