Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of various physical stress factors on mitochondrial function and reactive oxygen species in rat spermatozoa

Suhee Kim A , Cansu Agca A and Yuksel Agca A B
+ Author Affiliations
- Author Affiliations

A Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri–Columbia, Columbia, Missouri 65211, USA.

B Corresponding author. Email: agcay@missouri.edu

Reproduction, Fertility and Development 25(7) 1051-1064 https://doi.org/10.1071/RD12212
Submitted: 22 February 2012  Accepted: 25 September 2012   Published: 12 November 2012

Abstract

The aim of the present study was to evaluate the effects of various physical interventions on the function of epididymal rat spermatozoa and determine whether there are correlations among these functional parameters. Epididymal rat spermatozoa were subjected to various mechanical (pipetting, centrifugation and Percoll gradient separation) and anisotonic conditions, and sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were evaluated. Repeated pipetting caused a loss in motility, PMI and MMP (P < 0.05). Minimal centrifugation force (200g) had no effect on motility, PMI and MMP, whereas an increase in the centrifugation force to 400g or 600g decreased sperm function (P < 0.005). Percoll gradient separation increased total motility, PMI and MMP (P < 0.05). However, the spermatozoa that were subjected to mechanical interventions showed high susceptibility to a ROS stimulant (P < 0.005). Anisotonic conditions decreased motility, PMI and MMP, and hypotonic conditions in particular increased basal ROS (P < 0.05). In correlation tests, there were strong positive correlations among total motility, PMI and MMP, whereas ROS showed no or negatively weak correlations with the other parameters. In conclusion, the physical interventions may act as important variables, affecting functional parameters of epididymal rat spermatozoa. Therefore, careful consideration and proper protocols for handling of rat spermatozoa and osmotic conditions are required to achieve reliable results and minimise damage.

Additional keywords : mitochondrial membrane potential, osmotic condition, physical interventions.


References

Agarwal, A., Ikemoto, I., and Loughlin, K. R. (1994). Effect of sperm washing on levels of reactive oxygen species in semen. Arch. Androl. 33, 157–162.
Effect of sperm washing on levels of reactive oxygen species in semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7mtVGksw%3D%3D&md5=a74d6e80169514bf92163ef37a86febdCAS | 7857166PubMed |

Agarwal, A., Makker, K., and Sharma, R. (2008). Clinical relevance of oxidative stress in male factor infertility: an update. Am. J. Reprod. Immunol. 59, 2–11.
Clinical relevance of oxidative stress in male factor infertility: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Wjsbc%3D&md5=c7c959492f32c69af223b4322c019f2cCAS | 18154591PubMed |

Agca, Y., Gilmore, J., Byers, M., Woods, E. J., Liu, J., and Critser, J. K. (2002). Osmotic characteristics of mouse spermatozoa in the presence of extenders and sugars. Biol. Reprod. 67, 1493–1501.
Osmotic characteristics of mouse spermatozoa in the presence of extenders and sugars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Kjs7s%3D&md5=9f227ed7bfea4a8337b318ecc99bcdb5CAS | 12390881PubMed |

Agca, Y., Mullen, S., Liu, J., Johnson-Ward, J., Gould, K., Chan, A., and Critser, J. (2005). Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa. Cryobiology 51, 1–14.
Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVGgurc%3D&md5=e415ad06068bca4308bfd14ec82112dbCAS | 15922321PubMed |

Aitken, R. J., and Clarkson, J. S. (1988). Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J. Androl. 9, 367–376.
| 1:CAS:528:DyaL1MXhvVyrs78%3D&md5=24263a280ca6beec1881ec6b41073656CAS | 3215823PubMed |

Aitken, R. J., and Vernet, P. (1998). Maturation of redox regulatory mechanisms in the epididymis. J. Reprod. Fertil. Suppl. 53, 109–118.
| 1:CAS:528:DyaK1MXitVekurk%3D&md5=940235b3354b755e91ae1649f80fb4adCAS | 10645271PubMed |

Aitken, R. J., De Iuliis, G. N., Finnie, J. M., Hedges, A., and McLachlan, R. I. (2010). Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum. Reprod. 25, 2415–2426.
Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyltLjN&md5=b7981507c3cb2ec859495ce851a4e91eCAS | 20716559PubMed |

Alvarez, J. G., Lasso, J. L., Blasco, L., Nunez, R. C., Heyner, S., Caballero, P. P., and Storey, B. T. (1993). Centrifugation of human spermatozoa induces sublethal damage; separation of human spermatozoa from seminal plasma by a dextran swim-up procedure without centrifugation extends their motile lifetime. Hum. Reprod. 8, 1087–1092.
| 1:STN:280:DyaK2c%2FhtleitQ%3D%3D&md5=ee790834b7da661f55b766c97ae4d39bCAS | 7691866PubMed |

Arcidiacono, A., Walt, H., Campana, A., and Balerna, M. (1983). The use of Percoll gradients for the preparation of subpopulations of human spermatozoa. Int. J. Androl. 6, 433–445.
The use of Percoll gradients for the preparation of subpopulations of human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvF2ksw%3D%3D&md5=0c0f8c5c0df7a58a886ade131fd55262CAS | 6654517PubMed |

Bansal, A. K., and Bilaspuri, G. S. (2008). Oxidative stress alters membrane sulfhydryl status, lipid and phospholipid contents of crossbred cattle bull spermatozoa. Anim. Reprod. Sci. 104, 398–404.
Oxidative stress alters membrane sulfhydryl status, lipid and phospholipid contents of crossbred cattle bull spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmt78%3D&md5=d819f7e04928899cd7235d5522e6a817CAS | 17681722PubMed |

Bavister, B. D., Leibfried, M. L., and Lieberman, G. (1983). Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol. Reprod. 28, 235–247.
Development of preimplantation embryos of the golden hamster in a defined culture medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s7lsVSjtw%3D%3D&md5=466533d13141e2fe8e133191961b63e5CAS | 6830941PubMed |

Benau, D. A., and Storey, B. T. (1987). Characterization of the mouse sperm plasma membrane zona-binding site sensitive to trypsin inhibitors. Biol. Reprod. 36, 282–292.
Characterization of the mouse sperm plasma membrane zona-binding site sensitive to trypsin inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktVGjsLk%3D&md5=fe96de8dc95bd9da0404076adbd31f5fCAS | 3580450PubMed |

Correa, L. M., Thomas, A., and Meyers, S. A. (2007). The macaque sperm actin cytoskeleton reorganizes in response to osmotic stress and contributes to morphological defects and decreased motility. Biol. Reprod. 77, 942–953.
The macaque sperm actin cytoskeleton reorganizes in response to osmotic stress and contributes to morphological defects and decreased motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSgtLnP&md5=651efe7586b56c6448d5e0968c801044CAS | 17823088PubMed |

Ericsson, S. A., Garner, D. L., Thomas, C. A., Downing, T. W., and Marshall, C. E. (1993). Interrelationships among fluorometric analyses of spermatozoal function, classical semen quality parameters and the fertility of frozen–thawed bovine spermatozoa. Theriogenology 39, 1009–1024.
Interrelationships among fluorometric analyses of spermatozoal function, classical semen quality parameters and the fertility of frozen–thawed bovine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVSgsQ%3D%3D&md5=dfd14aaddbab0dee81de1d5064ce870cCAS | 16727272PubMed |

Filliers, M., Rijsselaere, T., Bossaert, P., De Causmaecker, V., Dewulf, J., Pope, C. E., and Van Soom, A. (2008). Computer-assisted sperm analysis of fresh epididymal cat spermatozoa and the impact of cool storage (4 degrees C) on sperm quality. Theriogenology 70, 1550–1559.
Computer-assisted sperm analysis of fresh epididymal cat spermatozoa and the impact of cool storage (4 degrees C) on sperm quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2qtbnI&md5=232857cca0014f309ccd4255dae16167CAS | 18692229PubMed |

Gaczarzewicz, D., Piasecka, M., Udala, J., Blaszczyk, B., Stankiewicz, T., and Laszczynska, M. (2010). Plasma membrane changes during the liquid storage of boar spermatozoa: a comparison of methods. Acta Vet. Hung. 58, 105–116.
Plasma membrane changes during the liquid storage of boar spermatozoa: a comparison of methods.Crossref | GoogleScholarGoogle Scholar | 20159744PubMed |

Gravance, C. G., Garner, D. L., Miller, M. G., and Berger, T. (2000). Fluorescent probes and flow cytometry to assess rat sperm integrity and mitochondrial function. Reprod. Toxicol. 15, 5–10.
Fluorescent probes and flow cytometry to assess rat sperm integrity and mitochondrial function.Crossref | GoogleScholarGoogle Scholar |

Gravance, C. G., Garner, D. L., Miller, M. G., and Berger, T. (2003). Flow cytometric assessment of changes in rat sperm mitochondrial function after treatment with pentachlorophenol. Toxicol. In Vitro 17, 253–257.
Flow cytometric assessment of changes in rat sperm mitochondrial function after treatment with pentachlorophenol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFWhsLY%3D&md5=1d365b777a86b99240bedaee29469623CAS | 12781203PubMed |

Guthrie, H. D., and Welch, G. R. (2006). Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J. Anim. Sci. 84, 2089–2100.
Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Onur8%3D&md5=09b3e6f2c8ef0309868f8b7cb0768ae2CAS | 16864869PubMed |

Henkel, R. (2005). The impact of oxidants on sperm function. Andrologia 37, 205–206.
The impact of oxidants on sperm function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFygt7k%3D&md5=acd7ae5e04e948ceda139106c62c9e08CAS | 16336248PubMed |

Henkel, R. R., and Schill, W. B. (2003). Sperm preparation for ART. Reprod. Biol. Endocrinol. 1, 108.
Sperm preparation for ART.Crossref | GoogleScholarGoogle Scholar | 14617368PubMed |

Institute of Laboratory Animal Resources (1996). ‘Guide for the care and use of laboratory animals.’ (National Academy Press: Washington, D.C.)

Katkov, I. I., and Mazur, P. (1998). Influence of centrifugation regimes on motility, yield, and cell associations of mouse spermatozoa. J. Androl. 19, 232–241.
| 1:STN:280:DyaK1c3jtVKktA%3D%3D&md5=c60c150b9b399eb2d0afe73aa62e55e0CAS | 9570748PubMed |

Katkov, I. I., and Mazur, P. (1999). Factors affecting yield and survival of cells when suspensions are subjected to centrifugation. Influence of centrifugal acceleration, time of centrifugation, and length of the suspension column in quasi-homogeneous centrifugal fields. Cell Biochem. Biophys. 31, 231–245.
Factors affecting yield and survival of cells when suspensions are subjected to centrifugation. Influence of centrifugal acceleration, time of centrifugation, and length of the suspension column in quasi-homogeneous centrifugal fields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFejtLY%3D&md5=c6eb99764961266e286d7855614f83d7CAS | 10736749PubMed |

Kim, S. H., Yu, D. H., and Kim, Y. J. (2010). Apoptosis-like change, ROS, and DNA status in cryopreserved canine sperm recovered by glass wool filtration and Percoll gradient centrifugation techniques. Anim. Reprod. Sci. 119, 106–114.
Apoptosis-like change, ROS, and DNA status in cryopreserved canine sperm recovered by glass wool filtration and Percoll gradient centrifugation techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Kjsrc%3D&md5=1d806e7859100570930871e7f1cc6245CAS | 19942382PubMed |

Koshimoto, C., Gamliel, E., and Mazur, P. (2000). Effect of osmolality and oxygen tension on the survival of mouse sperm frozen to various temperatures in various concentrations of glycerol and raffinose. Cryobiology 41, 204–231.
Effect of osmolality and oxygen tension on the survival of mouse sperm frozen to various temperatures in various concentrations of glycerol and raffinose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Wltw%3D%3D&md5=8ada7e8cfbea3fe9f9ca4d8dd75ffd89CAS | 11161554PubMed |

Lambert, I. H. (2003). Reactive oxygen species regulate swelling-induced taurine efflux in NIH3T3 mouse fibroblasts. J. Membr. Biol. 192, 19–32.
Reactive oxygen species regulate swelling-induced taurine efflux in NIH3T3 mouse fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Shtb0%3D&md5=fd1765238be091a04ef722a98498de62CAS | 12647031PubMed |

Lambert, I. H., Pedersen, S. F., and Poulsen, K. A. (2006). Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia. Acta Physiol. 187, 75–85.
Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVCgtbg%3D&md5=79b8134a7d589ecd36f09a78e752519fCAS |

Lazar, J., Moreno, C., Jacob, H. J., and Kwitek, A. E. (2005). Impact of genomics on research in the rat. Genome Res. 15, 1717–1728.
Impact of genomics on research in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFc%3D&md5=928889651e5a0b1ccd90029863e0f177CAS | 16339370PubMed |

Lee, J. A., Spidlen, J., Boyce, K., Cai, J., Crosbie, N., Dalphin, M., Furlong, J., Gasparetto, M., Goldberg, M., Goralczyk, E. M., et al. (2008). MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73A, 926–930.
MIFlowCyt: the minimum information about a flow cytometry experiment.Crossref | GoogleScholarGoogle Scholar |

Lehtonen, J. Y., and Kinnunen, P. K. (1995). Phospholipase A2 as a mechanosensor. Biophys. J. 68, 1888–1894.
Phospholipase A2 as a mechanosensor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1KgsLo%3D&md5=22fd60ff62fca79b47d6320dabf065adCAS | 7612831PubMed |

Mack, S. R., and Zaneveld, L. J. (1987). Acrosomal enzymes and ultrastructure of unfrozen and cryotreated human spermatozoa. Gamete Res. 18, 375–383.
Acrosomal enzymes and ultrastructure of unfrozen and cryotreated human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltlGnsw%3D%3D&md5=fac513c7a43e1c33880af9f95d45f0f8CAS | 3507383PubMed |

Mahfouz, R. Z., du Plessis, S. S., Aziz, N., Sharma, R., Sabanegh, E., and Agarwal, A. (2010). Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil. Steril. 93, 814–821.
Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFenu7k%3D&md5=47e53b2aaf9f614539d65bb5be76fe61CAS | 19100530PubMed |

Makler, A., and Jakobi, P. (1981). Effects of shaking and centrifugation on human sperm motility. Arch. Androl. 7, 21–26.
Effects of shaking and centrifugation on human sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3otVyisA%3D%3D&md5=f1267afb208dfc202ac89f7262719126CAS | 7271361PubMed |

Matás, C., Vieira, L., García-Vázquez, F. A., Avilés-López, K., López-Úbeda, R., Carvajal, J. A., and Gadea, J. (2011). Effects of centrifugation through three different discontinuous Percoll gradients on boar sperm function. Anim. Reprod. Sci. 127, 62–72.
Effects of centrifugation through three different discontinuous Percoll gradients on boar sperm function.Crossref | GoogleScholarGoogle Scholar | 21784589PubMed |

Mazur, P. (1984). Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247, C125–C142.
| 1:CAS:528:DyaL2cXls1Ors7w%3D&md5=5c2a414393fc701caacf32f45d3797daCAS | 6383068PubMed |

McCarthy, M. J., Baumber, J., Kass, P. H., and Meyers, S. A. (2010). Osmotic stress induces oxidative cell damage to rhesus macaque spermatozoa. Biol. Reprod. 82, 644–651.
Osmotic stress induces oxidative cell damage to rhesus macaque spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVersrw%3D&md5=b202b44abbce4b856adbed079a582ec1CAS | 19846599PubMed |

Meyers, S. A. (2005). Spermatozoal response to osmotic stress. Anim. Reprod. Sci. 89, 57–64.
Spermatozoal response to osmotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVart7%2FI&md5=506cae52b3bbe146204c5811a457d552CAS | 16084042PubMed |

Nakatsukasa, E., Inomata, T., Ikeda, T., Shino, M., and Kashiwazaki, N. (2001). Generation of live rat offspring by intrauterine insemination with epididymal spermatozoa cryopreserved at –196 degrees C. Reproduction 122, 463–467.
Generation of live rat offspring by intrauterine insemination with epididymal spermatozoa cryopreserved at –196 degrees C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVGksbk%3D&md5=67b462d455407374fe8071d1f19aadc0CAS | 11597311PubMed |

Nakatsukasa, E., Kashiwazaki, N., Takizawa, A., Shino, M., Kitada, K., Serikawa, T., Hakamata, Y., Kobayashi, E., Takahashi, R., Ueda, M., Nakashima, T., and Nakagata, N. (2003). Cryopreservation of spermatozoa from closed colonies, and inbred, spontaneous mutant, and transgenic strains of rats. Comp. Med. 53, 639–641.
| 1:CAS:528:DC%2BD2cXlvV2iug%3D%3D&md5=b392c34392bbe312cda595538e70f1a9CAS | 14727812PubMed |

O’Flaherty, C., de Lamirande, E., and Gagnon, C. (2006). Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic. Biol. Med. 41, 528–540.
Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlCqtrk%3D&md5=ff1d10495ecabcdcc58c829dc2ad8a3dCAS | 16863985PubMed |

Parrish, J. J., Krogenaes, A., and Susko-Parrish, J. L. (1995). Effect of bovine sperm separation by either swim-up or Percoll method on success of in vitro fertilization and early embryonic development. Theriogenology 44, 859–869.
Effect of bovine sperm separation by either swim-up or Percoll method on success of in vitro fertilization and early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVGgug%3D%3D&md5=b322f3c1c25d067444817a5668e59766CAS | 16727781PubMed |

Petrunkina, A. M., and Harrison, R. A. (2011). Mathematical analysis of mis-estimation of cell subsets in flow cytometry: viability staining revisited. J. Immunol. Methods 368, 71–79.
Mathematical analysis of mis-estimation of cell subsets in flow cytometry: viability staining revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFahsrs%3D&md5=914602f12fc883d154f27e724771b133CAS | 21362427PubMed |

Petrunkina, A. M., Waberski, D., Bollwein, H., and Sieme, H. (2010). Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach. Theriogenology 73, 995–1000.
Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3gsVejtQ%3D%3D&md5=047b861fead73a5576cdd13d7629bc1aCAS | 20171719PubMed |

Phillips, T. C., Dhaliwal, G. K., Verstegen-Onclin, K. M., and Verstegen, J. P. (2012). Efficacy of four density gradient separation media to remove erythrocytes and nonviable sperm from canine semen. Theriogenology 77, 39–45.
Efficacy of four density gradient separation media to remove erythrocytes and nonviable sperm from canine semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38%2FlvVGrtA%3D%3D&md5=f4d3e84ba48016c881707a3a4bec6fc3CAS | 21803408PubMed |

Sahin, E., Petrunkina, A. M., Waberski, D., Harrison, R. A., and Topfer-Petersen, E. (2009). Control of bull sperm cell volume during epididymal maturation. Reprod. Fertil. Dev. 21, 469–478.
Control of bull sperm cell volume during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 19261224PubMed |

Shekarriz, M., DeWire, D. M., Thomas, A. J., and Agarwal, A. (1995). A method of human semen centrifugation to minimize the iatrogenic sperm injuries caused by reactive oxygen species. Eur. Urol. 28, 31–35.
| 1:STN:280:DyaK287isV2gtA%3D%3D&md5=8b0c9cb27d0c04fbe34c61a31b113b5aCAS | 8521891PubMed |

Si, W., Benson, J. D., Men, H., and Critser, J. K. (2006). Osmotic tolerance limits and effects of cryoprotectants on the motility, plasma membrane integrity and acrosomal integrity of rat sperm. Cryobiology 53, 336–348.
Osmotic tolerance limits and effects of cryoprotectants on the motility, plasma membrane integrity and acrosomal integrity of rat sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit12ntw%3D%3D&md5=a92bcb356de9b00147354ae57b176bd2CAS | 17084388PubMed |

Songsasen, N., and Leibo, S. P. (1997). Cryopreservation of mouse spermatozoa. II. Relationship between survival after cryopreservation and osmotic tolerance of spermatozoa from three strains of mice. Cryobiology 35, 255–269.
Cryopreservation of mouse spermatozoa. II. Relationship between survival after cryopreservation and osmotic tolerance of spermatozoa from three strains of mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FjsFKqug%3D%3D&md5=334759321cfdcdc30ee511398a9cebd1CAS | 9367613PubMed |

Strehler, E., Baccetti, B., Sterzik, K., Capitani, S., Collodel, G., De Santo, M., Gambera, L., and Piomboni, P. (1998). Detrimental effects of polyvinylpyrrolidone on the ultrastructure of spermatozoa (Notulae seminologicae 13). Hum. Reprod. 13, 120–123.
Detrimental effects of polyvinylpyrrolidone on the ultrastructure of spermatozoa (Notulae seminologicae 13).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsF2ntrk%3D&md5=f94126933d7953a99ba6a5518a0b3283CAS | 9512241PubMed |

Suresh, S., Prithiviraj, E., and Prakash, S. (2010). Effect of Mucuna pruriens on oxidative stress mediated damage in aged rat sperm. Int. J. Androl. 33, 22–32.
Effect of Mucuna pruriens on oxidative stress mediated damage in aged rat sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislSrurY%3D&md5=8f77fe67ea4b1348730bfcbb2fcc126fCAS | 19207619PubMed |

Tanphaichitr, N., Millette, C. F., Agulnick, A., and Fitzgerald, L. M. (1988). Egg-penetration ability and structural properties of human sperm prepared by Percoll-gradient centrifugation. Gamete Res. 20, 67–81.
Egg-penetration ability and structural properties of human sperm prepared by Percoll-gradient centrifugation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7nt1OhtA%3D%3D&md5=35a422fab9d11079930fbc2a38b87ca4CAS | 3235029PubMed |

Tremellen, K. (2008). Oxidative stress and male infertility: a clinical perspective. Hum. Reprod. Update 14, 243–258.
Oxidative stress and male infertility: a clinical perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFOqtbc%3D&md5=bb36a276b17847fb98dd2e43561be433CAS | 18281241PubMed |

Varisli, O., Uguz, C., Agca, C., and Agca, Y. (2009a). Various physical stress factors on rat sperm motility, integrity of acrosome, and plasma membrane. J. Androl. 30, 75–86.
Various physical stress factors on rat sperm motility, integrity of acrosome, and plasma membrane.Crossref | GoogleScholarGoogle Scholar | 18723472PubMed |

Varisli, O., Uguz, C., Agca, C., and Agca, Y. (2009b). Effect of chilling on the motility and acrosomal integrity of rat sperm in the presence of various extenders. J. Am. Assoc. Lab. Anim. Sci. 48, 499–505.
| 1:CAS:528:DC%2BD1MXht1amsLvP&md5=8590a5218cba24d84a9861fb5f8eec5aCAS | 19807970PubMed |

Walters, E. M., Men, H., Agca, Y., Mullen, S. F., Critser, E. S., and Critser, J. K. (2005). Osmotic tolerance of mouse spermatozoa from various genetic backgrounds: acrosome integrity, membrane integrity, and maintenance of motility. Cryobiology 50, 193–205.
Osmotic tolerance of mouse spermatozoa from various genetic backgrounds: acrosome integrity, membrane integrity, and maintenance of motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVGks7o%3D&md5=5fe01d970c66864d4e40951dc00fa593CAS | 15843009PubMed |

Willoughby, C. E., Mazur, P., Peter, A. T., and Critser, J. K. (1996). Osmotic tolerance limits and properties of murine spermatozoa. Biol. Reprod. 55, 715–727.
Osmotic tolerance limits and properties of murine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlKguro%3D&md5=51b6b89baee66c975b0e3cbbdd4c2834CAS | 8862792PubMed |