Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Identification of alpha-1 acid glycoprotein (AGP) as a potential marker of impaired growth in the newborn piglet

Thomas J. Caperna A B , Amy E. Shannon A , Le Ann Blomberg A , Margo Stoll A and Timothy G. Ramsay A
+ Author Affiliations
- Author Affiliations

A Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Ave, Beltsville, MD 20705, USA.

B Corresponding author. Email: thomas.caperna@ars.usda.gov

Reproduction, Fertility and Development 25(8) 1126-1133 https://doi.org/10.1071/RD12103
Submitted: 31 March 2012  Accepted: 18 October 2012   Published: 23 November 2012

Abstract

Two studies were conducted to investigate the relationship between circulating levels of haptoglobin and α-1 acid glycoprotein (AGP) and growth in neonatal pigs. Circulating serum AGP, but not haptoglobin, was higher (P < 0.001) in newborn runts than average-sized littermates. At 1 and 3 weeks, AGP and haptoglobin were similar among control and runt piglets. To determine the possible association between AGP and growth rate, blood was collected between the first and second day after birth in piglets from 10 average litters. Birthweight was positively correlated with growth rate through 21 days (linear regression correlation coefficient (CC), 0.43 (P < 0.006); 0.299 (P < 0.003) in males and females, respectively). Plasma AGP at birth was negatively correlated with growth (CC, –0.429 (P < 0.006); –0.351 (P < 0.01) in males and females, respectively). When AGP was calculated on a per kg birthweight basis, the CC with growth improved by 25 and 34% in males and females, respectively, compared with birthweight alone. Haptoglobin in blood was not correlated with growth. These data suggest that AGP at birth is reflective of growth conditions in utero or fetal maturation and may serve as an early predictive biomarker for pre-weaning growth rate.

Additional keywords : biomarker, haptoglobin, IUGR, pigs, runts.


References

Banister, C. E., Koestler, D. C., Maccani, M. A., Padbury, J. F., Houseman, E. A., and Marsit, C. J. (2011). Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics 6, 920–927.
Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1OrsL4%3D&md5=5511ff25abc1156647e58e22efb26050CAS | 21758004PubMed |

Bauer, M., and Parvizi, N. (1996). Pulsatile and diurnal secretion of GH and IGF-1 in the chronically catheterized pig fetus. J. Endocrinol. 149, 125–133.
Pulsatile and diurnal secretion of GH and IGF-1 in the chronically catheterized pig fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitlyjtLo%3D&md5=1f0f9f74b51c0ff1b823e3ab5da28ce1CAS | 8676044PubMed |

Ceciliani, F., and Pocacqua, V. (2007). The acute-phase protein α1-acid glycoprotein: a model for altered glycosylation during disease. Curr. Protein Pept. Sci. 8, 91–108.
The acute-phase protein α1-acid glycoprotein: a model for altered glycosylation during disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1egsLw%3D&md5=4dcacd9057c7b5b4c9c61ee23f5cfc74CAS | 17305563PubMed |

Chen, H.-H., Lin, J.-H., Fung, H.-P., Ho, L.-L., Yang, P.-C., Lee, W.-C., Lee, Y.-P., and Chu, R.-M. (2003). Serum acute-phase proteins and swine health status. Can. J. Vet. Res. 27, 283–290.

Clapperton, M., Bishop, S. C., Cameron, N. D., and Glass, E. J. (2005). Association of acute-phase protein levels with growth performance and with selection for growth performance in large white pigs. Anim. Sci. 81, 213–220.
Association of acute-phase protein levels with growth performance and with selection for growth performance in large white pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SqtLfP&md5=2f16842ca5a452704517a9ab917be9f0CAS |

Clapperton, M., Bishop, S. C., Piñeiro, M., Campbell, F. M., and Glass, E. J. (2007). The association between plasma levels of acute-phase proteins, haptoglobin, alpha-1 acid glycoprotein (AGP), pig-MAP, transthyretin and serum amyloid A (SAA) in Large White and Meishan pigs. Vet. Immunol. Immunopathol. 119, 303–309.
The association between plasma levels of acute-phase proteins, haptoglobin, alpha-1 acid glycoprotein (AGP), pig-MAP, transthyretin and serum amyloid A (SAA) in Large White and Meishan pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWht7fE&md5=667e5636117ddde0b4b9cee0b7ad4776CAS | 17629575PubMed |

Clapperton, M., Diack, A. B., Matika, O., Glass, E. J., Gladney, C. D., Mellencamp, M. A., Hoste, A., and Bishop, S. C. (2009). Traits associated with innate and adaptive immunity in pigs: heritability and associations with performance under different health status conditions. Genet. Sel. Evol. 41, 54–65.
Traits associated with innate and adaptive immunity in pigs: heritability and associations with performance under different health status conditions.Crossref | GoogleScholarGoogle Scholar | 20042096PubMed |

de Grau, A., Dewey, C., Friendship, R., and de Lange, K. (2005). Observational study of factors associated with nursery pig performance. Can. J. Vet. Res. 69, 241–245.
| 16479720PubMed |

Eckersall, P. D., Saini, P. K., and McComb, C. (1996). The acute-phase response of acid-soluble glycoprotein, α1-acid glycoprotein, ceruloplasmin, haptoglobin and C-reactive protein, in the pig. Vet. Immunol. Immunopathol. 51, 377–385.
The acute-phase response of acid-soluble glycoprotein, α1-acid glycoprotein, ceruloplasmin, haptoglobin and C-reactive protein, in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksF2rt7s%3D&md5=0a624ca37bc54630e97ec8f0ef6dc627CAS | 8792574PubMed |

Eurell, T. E., Bane, D. P., Hall, W. F., and Schaeffer, D. J. (1992). Serum haptoglobin concentration as an indicator of weight gain in pigs. Can. J. Vet. Res. 56, 6–9.
| 1:CAS:528:DyaK38XhsVyqsbg%3D&md5=354e5788c3b62c89f7e52b509720a7f2CAS | 1586895PubMed |

Foxcroft, G. R., Dixon, W. T., Novak, S., Putman, C. T., Town, S. C., and Vinsky, M. D. A. (2006). The biological basis for prenatal programming in postnatal performance in pigs. J. Anim. Sci. 84, E105–E112.
| 16582081PubMed |

Frank, J. W., Mellencamp, M. A., Carroll, J. A., Boyd, R. D., and Allee, G. L. (2005). Acute feed intake and acute-phase protein responses following a lipopolysaccharide challenge in pigs from two dam lines. Vet. Immunol. Immunopathol. 107, 179–187.
Acute feed intake and acute-phase protein responses following a lipopolysaccharide challenge in pigs from two dam lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVOhurg%3D&md5=cb905745926d366dbbf7bc7e9f5fad55CAS | 15982749PubMed |

Guiraudie-Capraz, G., Slomianny, M. C., Pageat, P., Malosse, C., Cain, A. H., Orgeur, P., and Nagnan-Le Meillour, P. (2005). Biochemical and chemical supports for a transnatal olfactory continuity through sow maternal fluids. Chem. Senses 30, 241–251.
Biochemical and chemical supports for a transnatal olfactory continuity through sow maternal fluids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1yjtrc%3D&md5=a39b426d40f994b5ab43145e7b904972CAS | 15741598PubMed |

Hegarty, P. V. J., and Allen, C. E. (1978). Effect of pre-natal runting on the post-natal development of skeletal muscles in swine and rats. J. Anim. Sci. 46, 1634–1640.
| 1:STN:280:DyaE1M%2FgsFeqsg%3D%3D&md5=38764882e7f2bdccb376c4795ce69c32CAS |

Hiss-Pesch, S., Daniel, F., Dunkelberg-Denk, S., Mielenz, M., and Sauerwein, H. (2011). Transfer of maternal haptoglobin to suckling piglets. Vet. Immunol. Immunopathol. 144, 104–110.
Transfer of maternal haptoglobin to suckling piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOnsbzN&md5=6851a7c3f83cfd05a0cc2ca2b74aaaf8CAS | 21885131PubMed |

Hochepied, T., Berger, F. G., Baumann, H., and Libert, C. (2003). α1-Acid glycoprotein: an acute-phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor Rev. 14, 25–34.
α1-Acid glycoprotein: an acute-phase protein with inflammatory and immunomodulating properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFarsb8%3D&md5=4dbdc9fa79bce37ee771c7758788a5c5CAS | 12485617PubMed |

Irmak, S., Oliveira-Ferrer, L., Singer, B. B., Ergün, S., and Tilki, D. (2009). Pro-angiogenic properties of orosomucoid (ORM). Exp. Cell Res. 315, 3201–3209.
Pro-angiogenic properties of orosomucoid (ORM).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ogt7fP&md5=ddf918213a2e6673a7d5df3d1cda307fCAS | 19651122PubMed |

Itoh, H., Tamura, K., Izumi, M., Motoi, Y., Kidoguchi, K., and Funayama, Y. (1992). The influence of age and health status on the serum alpha1-acid glycoprotein level of conventional and specific pathogen-free pigs. Can. J. Vet. Res. 57, 74–78.

Lampreave, F., and Piñeiro, A. (1982). Characterization of a new alpha-glycoprotein as the major serum component in later fetal and newborn pigs. Comp. Biochem. Physiol. 72B, 215–219.
| 1:CAS:528:DyaL38Xlsl2gtb0%3D&md5=19190f5aef8f9062dc9854fd5b4fa559CAS |

Lampreave, F., and Piñeiro, A. (1984). The major serum protein of fetal and newborn pigs: biochemical properties and identification as a fetal form of alpha 1-acid glycoprotein. Int. J. Biochem. 16, 47–53.
The major serum protein of fetal and newborn pigs: biochemical properties and identification as a fetal form of alpha 1-acid glycoprotein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXotFGitA%3D%3D&md5=3b228d94a2271e26e8885b597d06c954CAS | 6698287PubMed |

Lampreave, F., González-Ramón, N., Martínez-Ayensa, S., Hernández, M.-A., Lorenzo, H.-K., García-Gil, A., and Piñeiro, A. (1994). Characterization of the acute-phase serum protein response in pigs. Electrophoresis 15, 672–676.
Characterization of the acute-phase serum protein response in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFGit7g%3D&md5=428b03723c0669c4b99916faa18aa578CAS | 7523107PubMed |

Larriestra, A. J., Wattanaphansak, S., Neumann, E. J., Bradford, J., Morrison, R. B., and Deen, J. (2006). Pig characteristics associated with mortality and light exit weight for the nursery phase. Can. Vet. J. 47, 560–566.
| 1:STN:280:DC%2BD28zptFSlsw%3D%3D&md5=912fa993d68635c85e72ad2b9002c918CAS | 16808228PubMed |

Mahan, D. C., and Lepine, A. J. (1991). Effect of pig weaning weight and associated nursery feeding programs on subsequent performance to 105 kilograms body weight. J. Anim. Sci. 69, 1370–1378.
| 1:STN:280:DyaK3Mzgt1Wrug%3D%3D&md5=a0f7220b537817dee87523df09289ffeCAS | 2071501PubMed |

Martin, M., Tesouro, M. A., González-Ramón, N., Piñeiro, A., and Lampreave, F. (2005). Major plasma proteins in pig serum during postnatal development. Reprod. Fertil. Dev. 17, 439–445.
Major plasma proteins in pig serum during postnatal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFOktbc%3D&md5=da702d74fdeab9b62b232821cc4c7e58CAS | 15899156PubMed |

McKay, R. M., and Garnett, I. (1986). Prenatal and postnatal influences on growth and fat measurements in swine. J. Anim. Sci. 63, 1095–1100.
| 1:STN:280:DyaL2s%2Fjtleitg%3D%3D&md5=df556395a02ceff54963eb72b8f6baf3CAS | 3771392PubMed |

Mejdoubi, N., Henriques, C., Bui, E., Durand, G., Lardeux, B., and Porquet, D. (1999). Growth hormone inhibits rat liver α-1-acid glycoprotein gene expression in vivo and in vitro. Hepatol. 29, 186–194.
Growth hormone inhibits rat liver α-1-acid glycoprotein gene expression in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslWmsQ%3D%3D&md5=fdbb89c1e4297b3b32412c49722089fdCAS |

Murata, H., Shimada, N., and Yoshioka, M. (2004). Current research on acute-phase proteins in veterinary diagnosis: an overview. Vet. J. 168, 28–40.
Current research on acute-phase proteins in veterinary diagnosis: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Cmsb0%3D&md5=4028def1e3c8358ae795f3ce5310b407CAS | 15158206PubMed |

Nerurkar, L. S., Marino, P. A., and Adams, D. O. (1981). Quantification of selected intracellular and secreted hydrolases of macrophages. In ‘Manual of Macrophage Methodology’. (Eds H. B. Herscowitz, H. T. Holden, J. A. Bellanti and A. Ghaffer.) pp. 229–247. (Marcel Dekker, Inc.: New York.)

Sorensen, N. S., Tegtmeier, C., Andresen, L. O., Piñeiro, M., Toussaint, M. J., Campbell, F. M., Lampreave, F., and Heegaard, P. M. (2006). The porcine acute-phase protein response to acute clinical and subclinical experimental infection with Streptococcus suis. Vet. Immunol. Immunopathol. 113, 157–168.
The porcine acute-phase protein response to acute clinical and subclinical experimental infection with Streptococcus suis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Sksbs%3D&md5=01516320a0a768254e6ad5ecdb44536bCAS | 16774789PubMed |

Stone, R. T., and Maurer, R. A. (1987). Cloning and developmental regulation of α1 acid glycoprotein in swine. Dev. Genet. 8, 295–304.
Cloning and developmental regulation of α1 acid glycoprotein in swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltVGmug%3D%3D&md5=b27048ae10619f981d80cef392c0a813CAS | 3502976PubMed |

Wang, J., Chen, L., Li, D., Yin, Y., Wang, X., Li, P., Dangott, L. J., Hu, W., and Wu, G. (2008). Intrauterine growth restriction affects the proteomes of the small intestine, liver and skeletal muscle in newborn pigs. J. Nutr. 138, 60–66.
| 1:CAS:528:DC%2BD1cXktVSktw%3D%3D&md5=c6fa628fb3bf3a1b9250348fc3c7d3a8CAS | 18156405PubMed |

Wu, G., Bazer, F. W., Wallace, J. M., and Spencer, T. E. (2006). Intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337.
Intrauterine growth retardation: implications for the animal sciences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFGktLs%3D&md5=d1adc6f15a2f2526ea8863e1f4c2c0fdCAS | 16908634PubMed |

Wu, W. Z., Wang, X. Q., Wu, G. Y., Kim, S. W., Chen, F., and Wang, J. J. (2010). Differential composition of proteomes in sow colostrum and milk from anterior and posterior mammary glands. J. Anim. Sci. 88, 2657–2664.
Differential composition of proteomes in sow colostrum and milk from anterior and posterior mammary glands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVOrtrs%3D&md5=8db00187e41ac710b338709d5651dde0CAS | 20418458PubMed |