Growth hormone regulation of follicular growth
Matthew C. LucyDivision of Animal Sciences, 158 Animal Science Research Center, University of Missouri, Columbia, MO 65211, USA. Email: lucym@missouri.edu
Reproduction, Fertility and Development 24(1) 19-28 https://doi.org/10.1071/RD11903
Published: 6 December 2011
Abstract
The somatotropic axis – consisting of growth hormone (GH), the insulin-like growth factors 1 and 2 (IGF1 and IGF2), GH binding protein (GHBP), IGF binding proteins (IGFBPs) 1 to 6, and the cell-surface receptors for GH and the IGFs – has major effects on growth, lactation and reproduction. The primary target tissues for GH are involved in growth and metabolism. The functionality of the somatotropic axis depends in part on the expression of liver GH receptor (GHR), which determines the amount of IGF1 released from the liver in response to GH. The IGF1 acts as a pleiotropic growth factor and also serves as the endocrine negative feedback signal controlling pituitary GH secretion. Growth hormone and IGF1 undergo dynamic changes throughout the life cycle, particularly when animals are either growing, early post partum or lactating. Cells within the reproductive tract can respond directly to GH but to a lesser degree than the primary target tissues. The major impact that GH has on reproduction, therefore, may be secondary to its systemic effects on metabolism (including insulin sensitivity) or secondary to the capacity for GH to control IGF1 secretion. Insulin-like growth factor 1 and IGFBP are also synthesised within the ovary and this local synthesis is a component of the collective IGF1 action on the follicle. Future studies of GH should focus on its direct effects on the follicle as well as its indirect effects mediated by shifts in nutrient metabolism, insulin sensitivity, IGF1 and IGFBP.
Additional keywords: follicle, somatomedin, somatotropin.
References
Adashi, E. Y., Resnick, C. E., Payne, D. W., Rosenfeld, R. G., Matsumoto, T., Hunter, M. K., Gargosky, S. E., Zhou, J., and Bondy, C. A. (1997). The mouse intraovarian insulin-like growth factor I system: departures from the rat paradigm. Endocrinology 138, 3881–3890.| The mouse intraovarian insulin-like growth factor I system: departures from the rat paradigm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFejur8%3D&md5=606255e8020076f21b900331325e4388CAS | 9275078PubMed |
Baker, J., Hardy, M. P., Zhou, J., Bondy, C., Lupu, F., Bellve, A. R., and Efstratiadis, A. (1996). Effects of an IGF-I gene null mutation on mouse reproduction. Mol. Endocrinol. 10, 903–918.
| Effects of an IGF-I gene null mutation on mouse reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktVagtrY%3D&md5=9a8117b1f16044b8f1a1c434f4356a24CAS | 8813730PubMed |
Beam, S. W., and Butler, W. R. (1999). Effects of energy balance on follicular development and first ovulation in postpartum dairy cows. J. Reprod. Fertil. 54, 411–424.
| 1:CAS:528:DyaK1MXnslSit7k%3D&md5=9f453ed1872c358caa3d25f7cb14ce24CAS |
Beg, M. A., and Ginther, O. J. (2006). Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction 132, 365–377.
| Follicle selection in cattle and horses: role of intrafollicular factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgt77F&md5=62e826450123efc23a418c8ff8310963CAS | 16940278PubMed |
Bonilla, A. Q., Oliveira, L. J., Ozawa, M., Newsom, E. M., Lucy, M. C., and Hansen, P. J. (2011). Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo. Mol. Cell. Endocrinol. 332, 170–179.
| Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WqtLbF&md5=a974c729588e6519a2f38f6ec973b0ebCAS | 20965229PubMed |
Braulke, T. (1999). Type-2 IGF receptor: a multi-ligand binding protein. Horm. Metab. Res. 31, 242–246.
| Type-2 IGF receptor: a multi-ligand binding protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlKksrk%3D&md5=c5a97227bb44301529173a6213f5862dCAS | 10226808PubMed |
Butler, S. T., Bork, A. L., Pelton, S. H., Radcliff, R. P., Lucy, M. C., and Butler, W. R. (2003). Insulin restores hepatic growth hormone (GH) responsiveness during lactation-induced negative energy balance in dairy cattle: effects on expression of insulin-like growth factor-I and GH receptor 1A. J. Endocrinol. 176, 205–217.
| Insulin restores hepatic growth hormone (GH) responsiveness during lactation-induced negative energy balance in dairy cattle: effects on expression of insulin-like growth factor-I and GH receptor 1A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVOkt70%3D&md5=c863fc7bf838467227c392e4b44ff9a4CAS | 12553869PubMed |
Chagas, L. M., Bass, J. J., Blache, D., Burke, C. R., Kay, J. K., Lindsay, D. R., Lucy, M. C., Martin, G. B., Meier, S., Rhodes, F. M., Roche, J. R., Thatcher, W. W., and Webb, R. (2007). Invited review: new perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows. J. Dairy Sci. 90, 4022–4032.
| Invited review: new perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsleqtb0%3D&md5=4227c24f1dee08785063f8fbfdd855e7CAS | 17699018PubMed |
Chandrashekar, V., Zaczek, D., and Bartke, A. (2004). The consequences of altered somatotropic system on reproduction. Biol. Reprod. 71, 17–27.
| The consequences of altered somatotropic system on reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKktL0%3D&md5=009e88c99785fb47995e94ba043efa3bCAS | 15028633PubMed |
Chase, C. C., Kirby, C. J., Hammond, A. C., Olson, T. A., and Lucy, M. C. (1998). Patterns of ovarian growth and development in cattle with a growth hormone receptor deficiency. J. Anim. Sci. 76, 212–219.
| 1:CAS:528:DyaK1cXlsVKhuw%3D%3D&md5=ed2b732c8b5c59c0364232241df5954fCAS | 9464901PubMed |
Chase, C. C., Elsasser, T. H., Spicer, L. J., Riley, D. G., Lucy, M. C., Hammond, A. C., Olson, T. A., and Coleman, S. W. (2011). Effect of growth hormone administration to mature miniature Brahman cattle treated with or without insulin on circulating concentrations of insulin-like growth factor-I and other metabolic hormones and metabolites. Domest. Anim. Endocrinol. 41, 1–13.
| Effect of growth hormone administration to mature miniature Brahman cattle treated with or without insulin on circulating concentrations of insulin-like growth factor-I and other metabolic hormones and metabolites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Klurs%3D&md5=c3889f44bc58095994e65c8d5ddbc0a6CAS | 21420268PubMed |
Christoforidis, A., Maniadaki, I., and Stanhope, R. (2005). Growth hormone/insulin-like growth factor-1 axis during puberty. Pediatr. Endocrinol. Rev. 3, 5–10.
| 16369208PubMed |
Cohick, W. S., Armstrong, J. D., Whitacre, M. D., Lucy, M. C., Harvey, R. W., and Campbell, R. M. (1996). Ovarian expression of insulin-like growth factor-I (IGF-I), IGF binding proteins, and growth hormone (GH) receptor in heifers actively immunized against GH-releasing factor. Endocrinology 137, 1670–1677.
| Ovarian expression of insulin-like growth factor-I (IGF-I), IGF binding proteins, and growth hormone (GH) receptor in heifers actively immunized against GH-releasing factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFCrurg%3D&md5=1e5668baaea6863f3727ddb91de23e66CAS | 8612500PubMed |
Colak, M., Shimizu, T., Matsunaga, N., Murayama, C., Nagashima, S., Kataoka, M., Kawashima, C., Matsui, M., Dorland, H. V., Bruckmaier, R., and Miyamoto, A. (2011). Oestradiol enhances plasma growth hormone and insulin-like growth factor-I concentrations and increased the expression of their receptors mRNAs in the liver of ovariectomized cows. Reprod. Domest. Anim. , .
| 21323755PubMed |
Cole, W. J., Madsen, K. S., Hintz, R. L., and Collier, R. J. (1991). Effect of recombinantly-derived bovine somatotropin on reproductive performance of dairy cattle. Theriogenology 36, 573–595.
| Effect of recombinantly-derived bovine somatotropin on reproductive performance of dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmslWjtr8%3D&md5=8548032b2423c76ddeae89ae95783a87CAS | 16727028PubMed |
Collier, R. J., Byatt, J. C., Curran, T., Eppard, P. J., Fabellar, A. C., Hintz, R. L., Hoffman, R., McCrate, M. M., McLaughlin, C. L., Sorbet, R. H., and Vicini, J. L. (1997). Post-approval evaluation of POSILAC bovine somatotropin in 28 commercial dairy herds. J. Dairy Sci. 80, 169.
Collier, R. J., Miller, M. A., McLaughlin, C. L., Johnson, H. D., and Baile, C. A. (2008). Effects of recombinant bovine somatotropin (rbST) and season on plasma and milk insulin-like growth factors I (IGF-I) and II (IGF-II) in lactating dairy cows. Domest. Anim. Endocrinol. 35, 16–23.
| Effects of recombinant bovine somatotropin (rbST) and season on plasma and milk insulin-like growth factors I (IGF-I) and II (IGF-II) in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVyksLc%3D&md5=5ab7392403958777a5db429c13780a0dCAS | 18325721PubMed |
Cushman, R. A., DeSouza, J. C., Hedgpeth, V. S., and Britt, J. H. (2001). Alteration of activation, growth, and atresia of bovine preantral follicles by long-term treatment of cows with estradiol and recombinant bovine somatotropin. Biol. Reprod. 65, 581–586.
| Alteration of activation, growth, and atresia of bovine preantral follicles by long-term treatment of cows with estradiol and recombinant bovine somatotropin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Wns7s%3D&md5=90693ef801732136e9e578dce58d11aeCAS | 11466229PubMed |
Danilovich, N., Wernsing, D., Coschigano, K. T., Kopchick, J. J., and Bartke, A. (1999). Deficits in female reproductive function in GH-R-KO mice; role of IGF-I. Endocrinology 140, 2637–2640.
| Deficits in female reproductive function in GH-R-KO mice; role of IGF-I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlKhtL0%3D&md5=1fa76931ddb3b5fb9a3c50c0974a01acCAS | 10342852PubMed |
de la Sota, R. L., Simmen, F. A., Diaz, T., and Thatcher, W. W. (1996). Insulin-like growth factor system in bovine first-wave dominant and subordinate follicles. Biol. Reprod. 55, 803–812.
| Insulin-like growth factor system in bovine first-wave dominant and subordinate follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1GktLo%3D&md5=3f5a2cc9231f497e50b0565a3d6a83fbCAS | 8879493PubMed |
Echternkamp, S. E., Spicer, L. J., Gregory, K. E., Canning, S. F., and Hammond, J. M. (1990). Concentrations of insulin-like growth factor-I in blood and ovarian follicular fluid of cattle selected for twins. Biol. Reprod. 43, 8–14.
| Concentrations of insulin-like growth factor-I in blood and ovarian follicular fluid of cattle selected for twins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFeisrg%3D&md5=9ee1e1228aa49976da3a571098b5c906CAS | 2393694PubMed |
Edens, A., and Talamantes, F. (1998). Alternative processing of growth hormone receptor transcripts. Endocr. Rev. 19, 559–582.
| Alternative processing of growth hormone receptor transcripts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntV2rtL8%3D&md5=c762e64346ff9173e982acc82721cba4CAS | 9793757PubMed |
Eicher, E. M., and Beamer, W. G. (1976). Inherited ateliotic dwarfism in mice: characteristics of the mutation little (lit). J. Hered. 67, 87–91.
| 1:STN:280:DyaE287ptFShsA%3D%3D&md5=332f4c831f6bd82a03f7b849c0d54e68CAS | 1270792PubMed |
Etherton, T. D. (2004). Somatotropic function: the somatomedin hypothesis revisited. J. Anim. Sci. 82, 239–244.
Flores, R., Looper, M. L., Rorie, R. W., Hallford, D. M., and Rosenkrans, C. F. (2008). Endocrine factors and ovarian follicles are influenced by body condition and somatotropin in postpartum beef cows. J. Anim. Sci. 86, 1335–1344.
| Endocrine factors and ovarian follicles are influenced by body condition and somatotropin in postpartum beef cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslOhsLw%3D&md5=bebf47bef88c7072285ee96127698de4CAS | 18272855PubMed |
Fortune, J. E., Rivera, G. M., and Yang, M. Y. (2004). Follicular development: the role of the follicular microenvironment in selection of the dominant follicle. Anim. Reprod. Sci. 82–83, 109–126.
| Follicular development: the role of the follicular microenvironment in selection of the dominant follicle.Crossref | GoogleScholarGoogle Scholar | 15271447PubMed |
Gahete, M. D., Durán-Prado, M., Luque, R. M., Martínez-Fuentes, A. J., Quintero, A., Gutiérrez-Pascual, E., Córdoba-Chacón, J., Malagón, M. M., Gracia-Navarro, F., and Castaño, J. P. (2009). Understanding the multifactorial control of growth hormone release by somatotropes: lessons from comparative endocrinology. Ann. N. Y. Acad. Sci. 1163, 137–153.
| Understanding the multifactorial control of growth hormone release by somatotropes: lessons from comparative endocrinology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVSqu7Y%3D&md5=86e35771817b2019afc66df5e9351c9fCAS | 19456335PubMed |
Gatford, K. L., Grupen, C. G., Campbell, R. G., Luxford, B. J., Smits, R. J., Owens, P. C., and Nottle, M. B. (2010). Reproductive responses to daily injections with porcine somatotropin before mating in gilts. J. Reprod. Dev. 56, 540–545.
| Reproductive responses to daily injections with porcine somatotropin before mating in gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyhurzM&md5=3d30096d3650c475364e427ede0070beCAS | 20581429PubMed |
Gong, J. G., Baxter, G., Bramley, T. A., and Webb, R. (1997). Enhancement of ovarian follicle development in heifers by treatment with recombinant bovine somatotropin: a dose-response study. J. Reprod. Fertil. 110, 91–97.
| Enhancement of ovarian follicle development in heifers by treatment with recombinant bovine somatotropin: a dose-response study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVansrc%3D&md5=1e9cad3a9b101bd0723ccde7f0844ea3CAS | 9227362PubMed |
Gonzalez Añover, P., Gonzalez-Bulnes, A., Veiga-Lopez, A., Garcia-Garcia, R. M., McNeilly, A. S., and Encinas, T. (2006). Effects of growth hormone and gonadotrophin releasing hormone antagonists on ovarian follicle growth in sheep. J. Vet. Pharmacol. Ther. 29, 373–377.
| Effects of growth hormone and gonadotrophin releasing hormone antagonists on ovarian follicle growth in sheep.Crossref | GoogleScholarGoogle Scholar | 16958781PubMed |
Hasler, J. F., Bilby, C. R., Collier, R. J., Denham, S. C., and Lucy, M. C. (2003). Effect of recombinant bovine somatotropin on superouvlatory response and recipient pregnancy rates in a commercial embryo transfer program. Theriogenology 59, 1919–1928.
| Effect of recombinant bovine somatotropin on superouvlatory response and recipient pregnancy rates in a commercial embryo transfer program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVCqs7o%3D&md5=d65a0f462c2734d1dd0a6dcfe5bdcaceCAS | 12600729PubMed |
Isaksson, O., Ohlsson, C., Sjögren, K., Wallenius, K., and Jansson, J. O. (2001). The somatomedin hypothesis revisited in a transgenic model. Growth Horm. IGF Res. 11, S49–S52.
| The somatomedin hypothesis revisited in a transgenic model.Crossref | GoogleScholarGoogle Scholar | 11527088PubMed |
Izadyar, F., Van Tol, H. T. A., Colenbrander, B., and Bevers, M. M. (1997). Stimulatory effect of growth hormone on in vitro maturation of bovine oocytes is exerted through cumulus cells and not mediated by IGF-I. Mol. Reprod. Dev. 47, 175–180.
| Stimulatory effect of growth hormone on in vitro maturation of bovine oocytes is exerted through cumulus cells and not mediated by IGF-I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFWltr4%3D&md5=e0910b41f616dfe1b2d1421b7e778745CAS | 9136119PubMed |
Jiang, H., and Lucy, M. C. (2001). Variants of the 5′-untranslated region of the bovine growth hormone receptor mRNA: isolation, expression, and effects on translational efficiency. Gene 265, 45–53.
| Variants of the 5′-untranslated region of the bovine growth hormone receptor mRNA: isolation, expression, and effects on translational efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsleksLo%3D&md5=2c19561ee7378f66d5a3432cc8e07dfcCAS | 11255006PubMed |
Jimenez-Krassel, F., Binelli, M., Tucker, H. A., and Ireland, J. J. (1999). Effect of long-term infusion with recombinant growth hormone-releasing factor and recombinant bovine somatotropin on development and function of dominant follicles and corpora lutea in Holstein cows. J. Dairy Sci. 82, 1917–1926.
| Effect of long-term infusion with recombinant growth hormone-releasing factor and recombinant bovine somatotropin on development and function of dominant follicles and corpora lutea in Holstein cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1Ggtb8%3D&md5=f93e4bf5a5e260f70e394b9133e5254fCAS | 10509250PubMed |
Kawashima, C., Sakaguchi, M., Suzuki, T., Sasamoto, Y., Takahashi, Y., Matsui, M., and Miyamoto, A. (2007). Metabolic profiles in ovulatory and anovulatory primiparous dairy cows during the first follicular wave postpartum. J. Reprod. Dev. 53, 113–120.
| Metabolic profiles in ovulatory and anovulatory primiparous dairy cows during the first follicular wave postpartum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Gntbo%3D&md5=71fe4d8cf9d29314394cf0a66a67168dCAS | 17043386PubMed |
Kirby, C. J., Thatcher, W. W., Collier, R. J., Simmen, F. A., and Lucy, M. C. (1996). Effects of growth hormone and pregnancy on expression of growth hormone receptor, insulin-like growth factor-I and insulin-like growth factor binding protein-2 and -3 genes in bovine uterus, ovary and oviduct. Biol. Reprod. 55, 996–1002.
| Effects of growth hormone and pregnancy on expression of growth hormone receptor, insulin-like growth factor-I and insulin-like growth factor binding protein-2 and -3 genes in bovine uterus, ovary and oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtlamurY%3D&md5=c709676b68e44b54b182d67ade816362CAS | 8902209PubMed |
Kirby, C. J., Smith, M. F., Keisler, D. H., and Lucy, M. C. (1997). Follicular function in lactating dairy cows treated with sustained release bovine somatotropin. J. Dairy Sci. 80, 273–285.
| Follicular function in lactating dairy cows treated with sustained release bovine somatotropin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsVWgsrs%3D&md5=a09cd1257ec43763e01e02a54fcce0d3CAS | 9058268PubMed |
Kölle, S., Sinowatz, F., Boie, G., and Lincoln, D. (1998). Developmental changes in expression of the growth hormone receptor messenger ribonucleic acid and protein in the bovine ovary. Biol. Reprod. 59, 836–842.
| Developmental changes in expression of the growth hormone receptor messenger ribonucleic acid and protein in the bovine ovary.Crossref | GoogleScholarGoogle Scholar | 9746733PubMed |
Kwintkiewicz, J., and Giudice, L. C. (2009). The interplay of insulin-like growth factors, gonadotropins, and endocrine disruptors in ovarian follicular development and function. Semin. Reprod. Med. 27, 043–051.
| The interplay of insulin-like growth factors, gonadotropins, and endocrine disruptors in ovarian follicular development and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVGntro%3D&md5=3167987cd5eea5e896dfd4e87125d04bCAS |
Le Roith, D., Bondy, C., Yakar, S., Liu, J. L., and Butler, A. (2001). The somatomedin hypothesis: 2001. Endocr. Rev. 22, 53–74.
| The somatomedin hypothesis: 2001.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFait7w%3D&md5=a281d936e189ab2103c0086426aa5abbCAS | 11159816PubMed |
Liu, J., Boyd, C. K., Kobayashi, Y., Chase, C. C., Hammond, A. C., Olson, T. A., Elsasser, T. H., and Lucy, M. C. (1999). A novel phenotype for Lardon dwarfism in miniature Bos indicus cattle suggests that the expression of growth hormone receptor 1A in liver is required for normal growth. Domest. Anim. Endocrinol. 17, 421–437.
| A novel phenotype for Lardon dwarfism in miniature Bos indicus cattle suggests that the expression of growth hormone receptor 1A in liver is required for normal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFemu7g%3D&md5=6304ec1b9679078c296c2c7cd4518a44CAS | 10628432PubMed |
Liu, J., Koenigsfeld, A. T., Cantley, T. C., Boyd, C. K., Kobayashi, Y., and Lucy, M. C. (2000). Growth and initiation of steroidogenesis in porcine follicles are associated with unique patterns of gene expression for individual components of the ovarian insulin-like growth factor system. Biol. Reprod. 63, 942–952.
| Growth and initiation of steroidogenesis in porcine follicles are associated with unique patterns of gene expression for individual components of the ovarian insulin-like growth factor system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFChs74%3D&md5=a0a6f705d9a3270f924b707c8285339bCAS | 10952942PubMed |
Lucy, M. C. (2008). Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction. Reprod. Domest. Anim. 43, 31–39.
| Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction.Crossref | GoogleScholarGoogle Scholar | 18638098PubMed |
Lucy, M. C., Collier, R. J., Kitchell, M. A., Dibner, J. J., Hauser, S. D., and Krivi, G. G. (1993). Immunohistochemical and nucleic acid analysis of somatotropin receptor populations in the bovine ovary. Biol. Reprod. 48, 1219–1227.
| Immunohistochemical and nucleic acid analysis of somatotropin receptor populations in the bovine ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltV2gtb0%3D&md5=2715ca99c3990c8bc4e085c570056519CAS | 8318577PubMed |
Lucy, M. C., Thatcher, W. W., Collier, R. J., Simmen, F. A., Ko, Y., Savio, J. D., and Badinga, L. (1995). Effects of somatotropin on the conceptus, uterus, and ovary during maternal recognition of pregnancy in cattle. Domest. Anim. Endocrinol. 12, 73–82.
| Effects of somatotropin on the conceptus, uterus, and ovary during maternal recognition of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1Klurc%3D&md5=7b2661eddabd774bdb2bdc1faa63e090CAS | 7542581PubMed |
Lucy, M. C., Jiang, H., and Kobayashi, Y. (2001). Changes in the somatotropin axis associated with the initiation of lactation. J. Dairy Sci. 84, E113–E119.
| Changes in the somatotropin axis associated with the initiation of lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFalsLo%3D&md5=bbde729cef8d2c1ae31914389572efabCAS |
Madej, A., Lang, A., Brandt, Y., Kindahl, H., Madsen, M. T., and Einarsson, S. (2005). Factors regulating ovarian function in pigs. Domest. Anim. Endocrinol. 29, 347–361.
| Factors regulating ovarian function in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFKns7Y%3D&md5=28f85b5c5e90b89d825d55b945ebe5beCAS | 15998503PubMed |
McCormack, B. L., Chase, C. C., Olson, T. A., Elsasser, T. H., Hammond, A. C., Welsh, T. H., Jiang, H., Randel, R. D., Okamura, C. A., and Lucy, M. C. (2009). A miniature condition in Brahman cattle is associated with a single nucleotide mutation within the growth hormone gene. Domest. Anim. Endocrinol. 37, 104–111.
| A miniature condition in Brahman cattle is associated with a single nucleotide mutation within the growth hormone gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvValu7Y%3D&md5=a24de669dae4337e256a6025366dd2edCAS | 19524387PubMed |
Mihm, M., and Evans, A. C. (2008). Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women. Reprod. Domest. Anim. 43, 48–56.
| Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women.Crossref | GoogleScholarGoogle Scholar | 18638104PubMed |
Obese, F. Y., Rabiee, A. R., Macmillan, K. L., Egan, A. R., Humphrys, S., and Anderson, G. A. (2008). Variation in plasma concentrations of insulin-like growth factor-I in pasture-fed Holstein cows. J. Dairy Sci. 91, 1814–1821.
| Variation in plasma concentrations of insulin-like growth factor-I in pasture-fed Holstein cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlWmtLs%3D&md5=b1cb1a8a0a51c937af550dd809f6b17dCAS | 18420612PubMed |
Radcliff, R. P., McCormack, B. L., Crooker, B. A., and Lucy, M. C. (2003a). Growth hormone (GH) binding and expression of GH receptor 1A mRNA in hepatic tissue of periparturient dairy cows. J. Dairy Sci. 86, 3933–3940.
| Growth hormone (GH) binding and expression of GH receptor 1A mRNA in hepatic tissue of periparturient dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWgs7bI&md5=41b18fb7647e8d21cf8567d41a8d8fd4CAS | 14740829PubMed |
Radcliff, R. P., McCormack, B. L., Crooker, B. A., and Lucy, M. C. (2003b). Plasma hormones and expression of growth hormone receptor and insulin-like growth factor-I mRNA in hepatic tissue of periparturient dairy cows. J. Dairy Sci. 86, 3920–3926.
| Plasma hormones and expression of growth hormone receptor and insulin-like growth factor-I mRNA in hepatic tissue of periparturient dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWgs7bO&md5=e2c230b705d0d9210b88c7d38a1aa2cdCAS | 14740827PubMed |
Radcliff, R. P., McCormack, B. L., Keisler, D. H., Crooker, B. A., and Lucy, M. C. (2006). Partial feed restriction decreases growth hormone receptor 1A mRNA expression in postpartum dairy cows. J. Dairy Sci. 89, 611–619.
| Partial feed restriction decreases growth hormone receptor 1A mRNA expression in postpartum dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWrt7o%3D&md5=d8ad9307082c169f8b3c0d4ac3719bb9CAS | 16428630PubMed |
Rhoads, M. L., Meyer, J. P., Kolath, S. J., Lamberson, W. R., and Lucy, M. C. (2008). Growth hormone receptor, insulin-like growth factor (IGF) 1 and IGF binding protein 2 expression in the reproductive tissues of early postpartum dairy cows. J. Dairy Sci. 91, 1802–1813.
| Growth hormone receptor, insulin-like growth factor (IGF) 1 and IGF binding protein 2 expression in the reproductive tissues of early postpartum dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlWmtLo%3D&md5=bc9b027f4f8b37d52062d23583aa330dCAS | 18420611PubMed |
Rivera, F., Narciso, C., Oliveira, R., Cerri, R. L., Correa-Calderón, A., Chebel, R. C., and Santos, J. E. (2010). Effect of bovine somatotropin (500 mg) administered at ten-day intervals on ovulatory responses, expression of estrus, and fertility in dairy cows. J. Dairy Sci. 93, 1500–1510.
| Effect of bovine somatotropin (500 mg) administered at ten-day intervals on ovulatory responses, expression of estrus, and fertility in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1arur8%3D&md5=18c7d0e701d4e5c910f9547ec64c1642CAS | 20338427PubMed |
Rosen, C. J. (2000). Growth hormone and aging. Endocrine 12, 197–202.
| Growth hormone and aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFWhtLo%3D&md5=32f40f9a44d54d2317c4334bb74dbb77CAS | 10905380PubMed |
Rosenfeld, R. G., and Hwa, V. (2009). The growth hormone cascade and its role in mammalian growth. Horm. Res. 71, 36–40.
| The growth hormone cascade and its role in mammalian growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFOku7g%3D&md5=0c269f6738fa25e522533d303ad55978CAS | 19407495PubMed |
Scaramuzzi, R. J., Murray, J. F., Downing, J. A., and Campbell, B. K. (1999). The effects of exogenous growth hormone on follicular steroid secretion and ovulation rate in sheep. Domest. Anim. Endocrinol. 17, 269–277.
| The effects of exogenous growth hormone on follicular steroid secretion and ovulation rate in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVWmt70%3D&md5=393065be2056a2c03b7c85a06cb3474bCAS | 10527129PubMed |
Scaramuzzi, R. J., Campbell, B. K., Downing, J. A., Kendall, N. R., Khalid, M., Muñoz-Gutiérrez, M., and Somchit, A. (2006). A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate. Reprod. Nutr. Dev. 46, 339–354.
| A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOnsrzF&md5=9155c3712574418876097eba185cbdf6CAS | 16824444PubMed |
Shahiduzzaman, A. K., Beg, M. A., Palhao, M. P., Siddiqui, M. A., Shamsuddin, M., and Ginther, O. J. (2010). Stimulation of the largest subordinate follicle by intrafollicular treatment with insulin-like growth factor 1 is associated with inhibition of the dominant follicle in heifers. Theriogenology 74, 194–201.
| Stimulation of the largest subordinate follicle by intrafollicular treatment with insulin-like growth factor 1 is associated with inhibition of the dominant follicle in heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVaiurY%3D&md5=576bcc34978f82b0b444193de74bc5a0CAS | 20416933PubMed |
Silva, J. R., Figueiredo, J. R., and van den Hurk, R. (2009). Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology 71, 1193–1208.
| Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2nur0%3D&md5=8755b6ea47804a4e30ba69d1465f78c0CAS | 19193432PubMed |
Sirotkin, A. V. (2005). Control of reproductive processes by growth hormone: extra- and intracellular mechanisms. Vet. J. 170, 307–317.
| Control of reproductive processes by growth hormone: extra- and intracellular mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOmt7nN&md5=2bb2e8ce0e3292ab161c5d60ff0f407aCAS | 16266845PubMed |
Sirotkin, A. V. (2011). Growth factors controlling ovarian functions. J. Cell Physiol. 226, 2222–2225.
| Growth factors controlling ovarian functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1KqtLs%3D&md5=c19363fd10b4c46ebd59ef1ae9157339CAS | 21660945PubMed |
Sjögren, K., Liu, J. L., Blad, K., Skrtic, S., Vidal, O., Wallenius, V., LeRoith, D., Törnell, J., Isaksson, O. G. P., Jansson, J. O., and Ohlsson, C. (1999). Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc. Natl. Acad. Sci. USA 96, 7088–7092.
| Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice.Crossref | GoogleScholarGoogle Scholar | 10359843PubMed |
Spicer, L. J. (2004). Proteolytic degradation of insulin-like growth factor binding proteins by ovarian follicles: a control mechanism for selection of dominant follicles. Biol. Reprod. 70, 1223–1230.
| Proteolytic degradation of insulin-like growth factor binding proteins by ovarian follicles: a control mechanism for selection of dominant follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFelt78%3D&md5=3d9e024b0c247d08d731b90aaa3c4ef7CAS | 14668213PubMed |
Spicer, L. J., and Aad, P. Y. (2007). Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF1 receptor: role of follicle-stimulating hormone and IGF2 receptor. Biol. Reprod. 77, 18–27.
| Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF1 receptor: role of follicle-stimulating hormone and IGF2 receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntV2gsbo%3D&md5=f13d0ab03b5b9acd560da8d9cda93109CAS | 17360960PubMed |
Spicer, L. J., and Chamberlain, C. S. (1999). Insulin-like growth factor binding protein-3: its biological effect on bovine granulosa cells. Domest. Anim. Endocrinol. 16, 19–29.
| Insulin-like growth factor binding protein-3: its biological effect on bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlejs7c%3D&md5=add3bc5f3a0e425c600f93c3751b775bCAS | 10081660PubMed |
Spicer, L. J., Alvarez, P., Prado, T. M., Morgan, G. L., and Hamilton, T. D. (2000). Effects of intraovarian infusion of insulin-like growth factor-I on ovarian follicular function in cattle. Domest. Anim. Endocrinol. 18, 265–278.
| Effects of intraovarian infusion of insulin-like growth factor-I on ovarian follicular function in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlOktb8%3D&md5=1ed654b4bf4ba26e6dea855357e9d408CAS | 10764981PubMed |
Stratikopoulos, E., Szabolcs, M., Dragatsis, I., Klinakis, A., and Efstratiadis, A. (2008). The hormonal action of IGF1 in postnatal mouse growth. Proc. Natl. Acad. Sci. USA 105, 19 378–19 383.
| The hormonal action of IGF1 in postnatal mouse growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamu7rE&md5=08ab59e48e288de5d391acddec231d40CAS |
Thatcher, W. W., Moreira, F., Santos, J. E., Mattos, R. C., Lopes, F. L., Pancarci, S. M., and Risco, C. A. (2001). Effects of hormonal treatments on reproductive performance and embryo production. Theriogenology 55, 75–89.
| Effects of hormonal treatments on reproductive performance and embryo production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslOrsw%3D%3D&md5=b86c30c9435c709cf649be383bbdc75dCAS | 11198090PubMed |
Thissen, J. P., Ketelslegers, J. M., and Underwood, L. E. (1994). Nutritional regulation of the insulin-like growth factors. Endocr. Rev. 15, 80–101.
| 1:CAS:528:DyaK2cXkvVWmtrw%3D&md5=8014f6c8d1d4c9be2b157bf86d968082CAS | 8156941PubMed |
Velazquez, M. A., Zaraza, J., Oropeza, A., Webb, R., and Niemann, H. (2009). The role of IGF1 in the in vivo production of bovine embryos from superovulated donors. Reproduction 137, 161–180.
| The role of IGF1 in the in vivo production of bovine embryos from superovulated donors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2ks7o%3D&md5=73e4ad5324bcd30a9b2e3b0fcdb8f515CAS | 19029343PubMed |
Veldhuis, J. D., Roemmich, J. N., Richmond, E. J., and Bowers, C. Y. (2006). Somatotropic and gonadotropic axes linkages in infancy, childhood, and the puberty-adult transition. Endocr. Rev. 27, 101–140.
| Somatotropic and gonadotropic axes linkages in infancy, childhood, and the puberty-adult transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Krt7k%3D&md5=77b6df4ae39728db5d6634d9793aee50CAS | 16434512PubMed |
Vicini, J. L., Buonomo, F. C., Veenhuizen, J. J., Miller, M. A., Clemmons, D. R., and Collier, R. J. (1991). Nutrient balance and stage of lactation affect responses of insulin, insulin-like growth factors I and II, and insulin-like growth factor-binding protein 2 to somatotropin administration in dairy cows. J. Nutr. 121, 1656–1664.
| 1:CAS:528:DyaK38Xps1c%3D&md5=8e8d386c98c600e7a32f131d9df14f42CAS | 1765832PubMed |
Vijayakumar, A., Novosyadlyy, R., Wu, Y., Yakar, S., and LeRoith, D. (2010). Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm. IGF Res. 20, 1–7.
| Biological effects of growth hormone on carbohydrate and lipid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKqtr8%3D&md5=7e5e459905ca909921fc69a928e2ba9aCAS | 19800274PubMed |
Walters, T. D., and Griffiths, A. M. (2009). Mechanisms of growth impairment in pediatric Crohn’s disease. Nat. Rev. Gastroenterol Hepatol 6, 513–523.
| Mechanisms of growth impairment in pediatric Crohn’s disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKjsL3O&md5=138a463e311147711a87742dcb501d4dCAS | 19713986PubMed |
Wang, J., Zhou, J., Powell-Braxton, L., and Bondy, C. (1999). Effects of Igf1 gene deletion on postnatal growth patterns. Endocrinology 140, 3391–3394.
| Effects of Igf1 gene deletion on postnatal growth patterns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVent7o%3D&md5=a38a4796d4c75c2bc9df5bf4ae126b54CAS | 10385438PubMed |
Wathes, D. C., Fenwick, M., Cheng, Z., Bourne, N., Llewellyn, S., Morris, D. G., Kenny, D., Murphy, J., and Fitzpatrick, R. (2007). Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology 68, S232–S241.
| Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitbg%3D&md5=73381ce563eefe1eb61540a439df92aaCAS | 17475319PubMed |
Webb R., Garnsworthy P. C., Gong J. G., and Armstrong D. G. (2004 ).
Wu, Y., Sun, H., Yakar, S., and LeRoith, D. (2009). Elevated levels of insulin-like growth factor (IGF)-I in serum rescue the severe growth retardation of IGF-I null mice. Endocrinology 150, 4395–4403.
| Elevated levels of insulin-like growth factor (IGF)-I in serum rescue the severe growth retardation of IGF-I null mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyrtb7P&md5=a47138b511a9f7278ec4bf2ab8d87633CAS | 19497975PubMed |
Yakar, S., Liu, J. L., Stannard, B., Butler, A., Accili, D., Sauer, B., and LeRoith, D. (1999). Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 96, 7324–7329.
| Normal growth and development in the absence of hepatic insulin-like growth factor I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVOru78%3D&md5=940352c7a097a7c30352899cbd073886CAS | 10377413PubMed |
Yuan, W., Bao, B., Garverick, H. A., Youngquist, R. S., and Lucy, M. C. (1998). Follicular dominance in cattle is associated with divergent patterns of ovarian gene expression for insulin-like growth factor (IGF)-I, IGF-II, and IGF binding protein-2 in dominant and subordinate follicles. Domest. Anim. Endocrinol. 15, 55–63.
| Follicular dominance in cattle is associated with divergent patterns of ovarian gene expression for insulin-like growth factor (IGF)-I, IGF-II, and IGF binding protein-2 in dominant and subordinate follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlWruw%3D%3D&md5=3bb0e136d19dcb3d7d94a07461cd1403CAS | 9437585PubMed |
Zhou, Y., Xu, B. C., Maheshwari, H. G., He, L., Reed, M., Lozykowski, M., Okada, S., Cataldo, L., Coschigamo, K., Wagner, T. E., Baumann, G., and Kopchick, J. J. (1997). A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse) Proc. Natl. Acad. Sci. USA 94, 13 215–13 220.
| A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvFamt70%3D&md5=edc91caa36d856661e73d8407360be41CAS |