Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Association between melatonin receptor 1A (MTNR1A) gene polymorphism and the reproductive performance of Mediterranean Italian buffaloes

S. Luridiana A , M. C. Mura A , M. Pazzola A , M. Paludo A , G. Cosso A , M. L. Dettori A , S. Bua A , G. M. Vacca A and V. Carcangiu A B
+ Author Affiliations
- Author Affiliations

A Dipartimento di Biologia Animale, Università degli Studi di Sassari, Via Vienna 2, 07100, Sassari, Italy.

B Corresponding author. Email: endvet@uniss.it

Reproduction, Fertility and Development 24(7) 983-987 https://doi.org/10.1071/RD11297
Submitted: 30 November 2011  Accepted: 8 February 2012   Published: 20 March 2012

Abstract

A melatonin receptor 1A (MTNR1A) gene polymorphism in adult buffaloes has been reported to affect reproductive seasonality. Consequently, the aim of the present study was to assess whether this polymorphism can affect age at first conception and the interval between first and second calving in Mediterranean Italian buffaloes. The allelic frequency of the C and T alleles was 0.44 and 0.56, respectively, whereas the genotypic frequency was 26% for C/C, 40% for C/T and 34% for T/T. The average age at first mating was approximately 20 months, whereas that at calving was approximately 32 months. The largest number of calvings of primiparous buffaloes was recorded between June and October. No associations between genotype, first mating and subsequent calving date were found. The duration from first to second calving was longer in buffaloes with the C/C genotype compared with those with the T/T and C/T genotypes (P < 0.01). The period of calving for buffaloes with the C/C genotype was mainly from July to September, whereas that for buffaloes with the T/T genotype was largely from March to May. The MTNR1A gene had no effect on the age of first conception in Mediterranean Italian buffaloes. Rather, the association between the T/T genotype and reproductive activity during days with a long photoperiod indicates that this polymorphism may be considered a genetic marker to identify buffaloes that are able to reproduce out of the breeding season.

Additional keywords: anaestrous, first conception, HpaI genotype, inter-calving period, seasonal reproduction.


References

Barile, V. L. (2005). Reproductive efficiency in female buffaloes. In ‘Buffalo Production and Research. FAO Regional Office for Europe, Technical Series 67’. (Ed. A. Borghese.) pp. 77–108. (Food and Agriculture Organization: Rome.)

Bittman, E. L., and Karsch, F. J. (1984). Nightly duration of pineal melatonin secretion determines the reproductive response to inhibitory day length in the ewe. Biol. Reprod. 30, 585–593.
Nightly duration of pineal melatonin secretion determines the reproductive response to inhibitory day length in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhs1yrsLk%3D&md5=9a6b49f6e719b7b991a1d32cc1567babCAS | 6722237PubMed |

Borghese, A., and Mazzi, M. (2005). Buffalo population and strategies in the world In ‘Buffalo Production and Research. FAO Regional Office for Europe, Technical Series 67’. (Ed. A. Borghese.) pp. 1–39. (Food and Agriculture Organization: Rome.)

Borghese, A., Terzano, G. M., Barile, V. L., and Parmeggiani, A. (1994). Season and feeding level effects on onset of puberty in buffalo heifers. In ‘Proceedings of the Fourth World Buffalo Congress, Sao Paulo, Brazil’. (Eds W. G. Vale, V. H. Banare and J. C. A. de Mattos.) pp. 525–527. (International Buffalo Federation: Rome.)

Campanile, G., Neglia, G., Gasparrini, B., Galero, G., Prandi, A., Di Palo, R., D’Occhio, M. J., and Zicarelli, L. (2005). Embryonic mortality in buffaloes synchronized and mated by AI during the seasonal decline in reproductive function. Theriogenology 63, 2334–2340.
Embryonic mortality in buffaloes synchronized and mated by AI during the seasonal decline in reproductive function.Crossref | GoogleScholarGoogle Scholar | 15826694PubMed |

Carcangiu, V., Vacca, G. M., Mura, M. C., Dettori, M. L., Pazzola, M., Luridiana, S., and Bini, P. P. (2009). Relationship between MTNR1A melatonin receptor gene polymorphism and seasonal reproduction in different goat breeds. Anim. Reprod. Sci. 110, 71–78.
Relationship between MTNR1A melatonin receptor gene polymorphism and seasonal reproduction in different goat breeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGgsLrE&md5=32591050c9132e762a1669d85fed3b1dCAS | 18243602PubMed |

Carcangiu, V., Luridiana, S., Vacca, G. M., Daga, C., and Mura, M. C. (2011a). A polymorphism at the melatonin receptor 1A (MTNR1A) gene in Sarda ewes affects fertility after AI in the spring. Reprod. Fertil. Dev. 23, 376–380.
A polymorphism at the melatonin receptor 1A (MTNR1A) gene in Sarda ewes affects fertility after AI in the spring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFeqtw%3D%3D&md5=1a7af70c7d8d8a0c72067d661d6282f0CAS | 21211471PubMed |

Carcangiu, V., Mura, M. C., Pazzola, M., Vacca, G. M., Paludo, M., Marchi, B., Daga, C., Bua, S., and Luridiana, S. (2011b). Characterization of the Mediterranean Italian buffaloes melatonin receptor 1A (MTNR1A) gene and its association with reproductive seasonality. Theriogenology 76, 419–426.
Characterization of the Mediterranean Italian buffaloes melatonin receptor 1A (MTNR1A) gene and its association with reproductive seasonality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFWht7g%3D&md5=b4f98a53addcbae147cf3128763994d2CAS | 21497385PubMed |

Chabot, V., Caldani, M., de Reviers, M. M., and Pelletier, J. (1998). Localization and quantification of melatonin receptors in the diencephalon and posterior telencephalon of the sheep brain. J. Pineal Res. 24, 50–57.
Localization and quantification of melatonin receptors in the diencephalon and posterior telencephalon of the sheep brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1Wksg%3D%3D&md5=ab5a242b5dd31bbb9b613613619c2b81CAS | 9468118PubMed |

Dardente, H. (2007). Does a melatonin-dependent circadian oscillator in the pars tuberalis drive prolactin seasonal rhythmicity? J. Neuroendocrinol. 19, 657–666.
Does a melatonin-dependent circadian oscillator in the pars tuberalis drive prolactin seasonal rhythmicity?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXoslKqu70%3D&md5=ae835f6905cd112acbdaf539f9ab69faCAS | 17620107PubMed |

De Franciscis, G. (1988). Buffalo production system in Europe. In ‘Proceedings of the Second World Buffalo Congress, Vol. II, New Delhi, India’. (Eds R. M. Acharya and A. T. Kumar) pp. 21–42. (International Buffalo Federation: Rome.)

Dubocovich, M. L., Rivera-Bermudez, M. A., Gerdin, M. J., and Masan, M. I. (2003). Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front. Biosci. 8, d1093–d1108.
Molecular pharmacology, regulation and function of mammalian melatonin receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVajsLo%3D&md5=dd2511ca857dcd118a6720b445cb6d79CAS | 12957828PubMed |

Dupré, S. M., Burt, D. W., Talbot, R., Downing, A., Mouzaki, D., Waddington, D., Malpaux, B., Davis, J. R., Lincoln, G. A., and Loudon, A. S. (2008). Identification of melatonin-regulated genes in the ovine pituitary pars tuberalis, a target site for seasonal hormone control. Endocrinology 149, 5527–5539.
Identification of melatonin-regulated genes in the ovine pituitary pars tuberalis, a target site for seasonal hormone control.Crossref | GoogleScholarGoogle Scholar | 18669596PubMed |

Ghuman, S. P., Singh, J., Honparkhe, M., Dadarwal, D., Dhaliwal, G. S., and Jain, A. K. (2010). Induction of ovulation of ovulatory size non-ovulatory follicles and initiation of ovarian cyclicity in summer anoestrous buffalo heifers (Bubalus bubalis) using melatonin implants. Reprod. Domest. Anim. 45, 600–607.
| 1:STN:280:DC%2BC3cnpsFSlsg%3D%3D&md5=0c01166d890b02a21ff06a334692ee5cCAS | 19090824PubMed |

Malpaux, B., Daveau, A., Maurice-Mandon, F., Duarte, G., and Chemineau, P. (1998). Evidence that melatonin acts in the premammillary hypothalamic area to control reproduction in the ewe: Presence of binding sites and stimulationof luteinizing hormone secretion by in situ microimplant delivery. Endocrinology 139, 1508–1516.
Evidence that melatonin acts in the premammillary hypothalamic area to control reproduction in the ewe: Presence of binding sites and stimulationof luteinizing hormone secretion by in situ microimplant delivery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVKmtrk%3D&md5=73293f74e969a147306166f7350fc7d9CAS | 9528928PubMed |

Mateescu, R. G., Lunsford, A. K., and Thonney, M. L. (2009). Association between melatonin receptor 1A gene polymorphism and reproductive performance in Dorset ewes. J. Anim. Sci. 87, 2485–2488.
Association between melatonin receptor 1A gene polymorphism and reproductive performance in Dorset ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptV2gtr0%3D&md5=23ce41454ca679171c594854ff2f3a6fCAS | 19359514PubMed |

Messer, L. A., Wang, L., Tuggle, C. K., Yerle, M., Chardon, P., Pomp, D., Womack, J. E., Barendse, W., Crawford, A. M., Notter, D. R., and Rothschild, M. F. (1997). Mapping of the melatonin receptor 1a (MTNR1A) gene in pigs, sheep and cattle. Mamm. Genome 8, 368–370.
Mapping of the melatonin receptor 1a (MTNR1A) gene in pigs, sheep and cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVOhsbc%3D&md5=b88acca00ff6df49dbb927b811c37725CAS | 9107687PubMed |

Mura, M. C., Luridiana, S., Vacca, G. M., Bini, P. P., and Carcangiu, V. (2010). Effect of genotype at the MTNR1A locus and melatonin treatment on first conception in Sarda ewe lambs. Theriogenology 74, 1579–1586.
Effect of genotype at the MTNR1A locus and melatonin treatment on first conception in Sarda ewe lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKhsLbO&md5=551f52c443c4576844ce84b747426cf8CAS | 20708235PubMed |

Perera, B. M. A. O. (2008). Reproduction in domestic buffalo. Reprod. Domest. Anim. 43, 200–206.
Reproduction in domestic buffalo.Crossref | GoogleScholarGoogle Scholar |

Perera, B. M. A. O. (2011). Reproductive cycles of buffalo. Anim. Reprod. Sci. 124, 194–199.
Reproductive cycles of buffalo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFWhtbo%3D&md5=5c43509fc31679b62414424d59a8fdeeCAS |

Presicce, G. A. (2007). Reproduction in the water buffalo. Reprod. Domest. Anim. 42, 24–32.
Reproduction in the water buffalo.Crossref | GoogleScholarGoogle Scholar | 17688599PubMed |

Presicce, G. A., De Santis, G., and Senatore, E. M. (2004). Ovarian follicular dynamics in postpartum Mediterranean Italian buffaloes. Reprod. Domest. Anim. 16, 235–235.

Presicce, G. A., Senatore, E. M., De Santis, G., and Bella, A. (2005). Follicle turnover and pregnancy rates following oestrus synchronization protocols in Mediterranean Italian buffaloes (Bubalus bubalis). Reprod. Domest. Anim. 40, 443–447.
Follicle turnover and pregnancy rates following oestrus synchronization protocols in Mediterranean Italian buffaloes (Bubalus bubalis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWntrrK&md5=ec4371d6d35cce346682ccc6cbe7661fCAS | 16149950PubMed |

R Development Core Team (2011). R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/

Rousset, F. (2008). GENEPOP’007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resources 8, 103–106.
GENEPOP’007: a complete reimplementation of the GENEPOP software for Windows and Linux.Crossref | GoogleScholarGoogle Scholar |

Weaver, D. R., Liu, C., and Reppert, S. M. (1996). Nature’s knock-out: the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. Mol. Endocrinol. 10, 1478–1487.
Nature’s knock-out: the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFShs7s%3D&md5=68f549f3d425bc81639caacddf6dad26CAS | 8923472PubMed |

Zicarelli, L. (1997). Reproductive seasonality in buffalo. Bubalus bubalis , 29–52.

Zicarelli, L., Campanile, G., Esposito, L., Di Palo, R., Boni, R., Spadetta, M., Montemurro, N., Pacelli, C., Borghese, A., Barile, V. L., Terzano, G. M., Annicchiarico, G., Allegrini, S., De Benedetti, A., Malfatti, A., Lucaroni, A., and Todini, L. (1994). Anaestro e induzione dell’estro in bufale acicliche [Anoestrus and oestrus induction in acyclic buffaloes]. Agricoltura Ricerca 153, 25–40.

Züge, R. M., Rodacki, U., Grandi, A. T., Aerts, J. M. J., and Bols, P. E. J. (2004). Successful out-of-breeding season estrus synchronization followed by fixed time insemination in water buffalo (Bubalus bubalis). Reprod. Fertil. Dev. 16, 229.
Successful out-of-breeding season estrus synchronization followed by fixed time insemination in water buffalo (Bubalus bubalis).Crossref | GoogleScholarGoogle Scholar |