Solea senegalensis vasa transcripts: molecular characterisation, tissue distribution and developmental expression profiles
Tiziana Pacchiarini A , Ismael Cross B , Ricardo B. Leite C , Paulo Gavaia C , Juan B. Ortiz-Delgado A , Pedro Pousão-Ferreira D , Laureana Rebordinos B , Carmen Sarasquete A and Elsa Cabrita A EA Institute of Marine Science of Andalusia- ICMAN.CSIC, Av Republica Saharaui, 2, 11510 Puerto Real, Cádiz, Spain.
B Laboratory of Genetics, Faculty of Marine Science and Environment, University of Cádiz, Pol. Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
C Center for Marine Science- CCMAR, University of Algarve, Campus Gambelas, 8000-139 Faro, Portugal.
D IPIMAR, Av. 5 Outubro, 8720-305 Olhão, Portugal.
E Corresponding author. Email: elsa.cabrita@icman.csic.es
Reproduction, Fertility and Development 25(4) 646-660 https://doi.org/10.1071/RD11240
Submitted: 20 September 2011 Accepted: 18 May 2012 Published: 26 July 2012
Abstract
The Vasa protein is an RNA helicase belonging the DEAD (Asp-Glu-Ala-Asp)-box family. The crucial role played by the vasa gene in the germ-cell lineage of both vertebrates and invertebrates has made this gene a useful molecular marker for germinal cells and a useful tool in surrogate broodstock production using primordial germ cell transplantation. With the aim of establishing a novel approach to improving Solea senegalensis broodstock management, the vasa gene in this species was characterised. Four S. senegalensis vasa transcripts were isolated: Ssvasa1, Ssvasa2, Ssvasa3 and Ssvasa4. Their phylogenetic relationship with other vasa homologues was determined confirming the high degree of conservation of this helicase throughout evolution. Our qPCR results showed that S. senegalensis vasa transcripts are prevalently expressed in gonads, with ovary-specific expression for Ssvasa3 and Ssvasa4. During embryonic and larval development, a switch between the longest and the shortest transcripts was observed. While Ssvasa1 and Ssvasa2 were maternally supplied, Ssvasa3 and Ssvasa4 depended on the de novo expression program of the growing juveniles, suggesting that vasa mRNA could be involved in Senegalese sole gonad differentiation. In situ hybridisation and immunohistochemical analysis performed in 150-days after hatching (DAH) larvae showed vasa product expression in the germinal region of early gonads. In our work we demonstrated the usefulness of Ssvasa mRNAs as molecular markers for primordial germ cells and germinal cells during embryonic development, larval ontogenesis and gonad differentiation. Furthermore, our results confirmed the potential of vasa to help investigate germinal cell biotechnology for Senegalese sole reproduction.
Additional keywords: development, ovary, primordial germ cells, testis, vasa expression.
References
Blázquez, M., González, A., Mylonas, C. C., and Piferrer, F. (2011). Cloning and sequence analysis of a vasa homologue in the European sea bass (Dicentrarchus labrax): tissue distribution and mRNA expression levels during early development and sex differentiation. Gen. Comp. Endocrinol. 170, 322–333.| Cloning and sequence analysis of a vasa homologue in the European sea bass (Dicentrarchus labrax): tissue distribution and mRNA expression levels during early development and sex differentiation.Crossref | GoogleScholarGoogle Scholar | 20955711PubMed |
Braat, A. K., Speksnijder, J. E., and Zivkovic, D. (1999). Germ line development in fishes. Int. J. Dev. Biol. 43, 745–760.
| 1:CAS:528:DC%2BD3cXhvFWmtr4%3D&md5=b30f3141dd2d6eca6d0a4803a17da017CAS | 10668983PubMed |
Braat, A. K., Zandbergen, T., Van De Water, S., Th Goos, H. J., and Zivkovic, D. (1999). Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev. Dyn. 216, 153–167.
| Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVymu7o%3D&md5=8626e68d831268096b4ba0c57c724142CAS | 10536055PubMed |
Cabrita, E., Soares, F., and Dinis, M. T. (2006). Characterization of Senegalese sole, Solea senegalensis, male broodstock in terms of sperm production and quality. Aquaculture 261, 967–975.
| Characterization of Senegalese sole, Solea senegalensis, male broodstock in terms of sperm production and quality.Crossref | GoogleScholarGoogle Scholar |
Cabrita, E., Soares, F., Beirão, J., García-López, A., Martínez-Rodríguez, G., and Dinis, M. T. (2011). Endocrine and milt response of Senegalese sole, Solea senegalensis, males maintained in captivity. Theriogenology 75, 1–9.
| Endocrine and milt response of Senegalese sole, Solea senegalensis, males maintained in captivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFantr3L&md5=1355610dd95423a9658a48db925654ccCAS | 20833416PubMed |
Cardinali, M., Gioacchini, G., Candiani, S., Pestarino, M., Yoshizaki, G., and Carnevali, O. (2004). Hormonal regulation of vasa-like messenger RNA expression in the ovary of the marine teleost Sparus aurata. Biol. Reprod. 70, 737–743.
| Hormonal regulation of vasa-like messenger RNA expression in the ovary of the marine teleost Sparus aurata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1ChsLc%3D&md5=58b27a917113e1c56972c13011258c9bCAS | 14613903PubMed |
Castrillon, D., Quade, B., Wang, T., Quigley, C., and Crum, C. (2000). The human VASA gene is specifically expressed in the germ cell lineage. Proc. Natl. Acad. Sci. USA 97, 9585–9590.
| The human VASA gene is specifically expressed in the germ cell lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVensbc%3D&md5=655e5c152c80e0c2ab6c24de4fa34cbfCAS | 10920202PubMed |
Dinis, M. T., Ribeiro, L., Soares, C., and Sarasquete, C. (1999). A review on the cultivation potential of Solea senegalensis in Spain and Portugal. Aquaculture 176, 27–38.
| A review on the cultivation potential of Solea senegalensis in Spain and Portugal.Crossref | GoogleScholarGoogle Scholar |
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution Int. J. Org. Evolution 39, 783–791.
| Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |
Fujimura, K., Conte, M. A., and Kocher, T. D. (2011). Circular DNA intermediate in the duplication of Nile tilapia vasa genes. PLoS ONE 6, e29477.
| Circular DNA intermediate in the duplication of Nile tilapia vasa genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFKhuw%3D%3D&md5=a7e5a599a1b11894d5e180739deb7a41CAS | 22216289PubMed |
Fujiwara, Y., Komiya, T., Kawabata, H., Sato, M., Fujimoto, H., Furusawa, M., and Noce, T. (1994). Isolation of a DEAD-family protein gene that encodes a murine homologue of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl. Acad. Sci. USA 91, 12 258–12 262.
| Isolation of a DEAD-family protein gene that encodes a murine homologue of Drosophila vasa and its specific expression in germ cell lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisF2jsL0%3D&md5=65c12c9700b79aa8859932e057c3e2f0CAS |
García-López, A., Couto, E., Canario, A. V. M., Sarasquete, C., and Martínez-Rodríguez, G. (2007). Ovarian development and plasma sex steroid levels in cultured female Senegalese sole Solea senegalensis. Comp. Biochem. Physiol. A 146, 342–354.
| Ovarian development and plasma sex steroid levels in cultured female Senegalese sole Solea senegalensis.Crossref | GoogleScholarGoogle Scholar |
Gil-Salas, F. M., Morris, J., Colyer, A., Budgeb, G., Boonhamb, N., Cuadrado, I. M., and Janssen, D. (2007). Development of real-time RT-PCR assays for the detection of Cucumber vein yellowing virus (CVYV) and Cucurbit yellow stunting disorder virus (CYSDV) in the whitefly vector Bemisia tabaci. J. Virol. Methods 146, 45–51.
| Development of real-time RT-PCR assays for the detection of Cucumber vein yellowing virus (CVYV) and Cucurbit yellow stunting disorder virus (CYSDV) in the whitefly vector Bemisia tabaci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KrsLfN&md5=98bf98221525c775b88d1e5134ecacafCAS | 17624449PubMed |
Gruidl, M., Smith, P., Kuznicki, K., McCrone, J., Kirchner, J., Roussell, D., Strome, S., and Bennett, K. (1996). Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 93, 13 837–13 842.
| Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1GmtLc%3D&md5=6044b2a8870f29ffac35987a974c869dCAS |
Gúzman, J. M., Bayarri, M. J., Ramos, J., Zohar, Y., Sarasquete, C., and Mañanos, E. (2009). Follicle stimulating hormone (FSH) and luteinizing hormone (LH) gene expression during larval development in Senegalese sole (Solea senegalensis). Comp. Biochem. Physiol. A 164, 37–43.
Gúzman, J. M., Cal, R., García-López, A., Chereguini, O., Knight, K., Olmedo, M., Sarasquete, C., Mylonas, C. C., Peleteiro, J. B., Zohar, Y., and Mañanos, E. (2010). Effects of in vivo treatment with dopamine antagonist pimozide and gonadotrophin-releasing hormone agonist (GnRHa) on the reproductive axis of Senegalese sole (Solea senegalensis). Comp. Biochem. Physiol. 158, 235–245.
| Effects of in vivo treatment with dopamine antagonist pimozide and gonadotrophin-releasing hormone agonist (GnRHa) on the reproductive axis of Senegalese sole (Solea senegalensis).Crossref | GoogleScholarGoogle Scholar |
Hay, B., Ackermann, L., Barbel, S., Jan, L. Y., and Jan, Y. N. (1988). Identification of a component of Drosophila polar granules. Development 103, 625–640.
| 1:STN:280:DyaL1M3ltFansA%3D%3D&md5=c0e096ff0044610820022ede02a095c1CAS | 3150351PubMed |
Hay, B., Jan, L., and Jan, Y. (1988). A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577–587.
| A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvFWnsbs%3D&md5=72d92fe80b8ab21d0b9141bd9d81c5a0CAS | 3052853PubMed |
Hay, B., Jan, L. Y., and Jan, Y. N. (1990). Localization of vasa, a component of Drosofila polar granules, in maternal-effect mutants that alter embryonic aneroposterior polarity. Development 109, 425–433.
| 1:STN:280:DyaK3czot1amtQ%3D%3D&md5=7db868c9ab33c3f669f6c1f6222dd9fdCAS | 2119289PubMed |
Herpin, A., Rohr, S., Riedel, D., Kluever, N., Raz, E., and Schartl, M. (2007). Specification of primordial germ cells in medaka (Oryzias latipes). BMC Dev. Biol. 7, 3.
| Specification of primordial germ cells in medaka (Oryzias latipes).Crossref | GoogleScholarGoogle Scholar | 17217535PubMed |
Higuchi, K., Takeuchi, Y., Miwa, M., Yamamoto, Y., Tsunemoto, K., and Yoshizaki, G. (2011). Colonization, proliferation and survival of intraperitoneally transplanted yellowtail Seriola quinqueradiata spermatogonia in nibe croaker Nibea mitsukurii recipient. Fish. Sci. 77, 69–77.
| Colonization, proliferation and survival of intraperitoneally transplanted yellowtail Seriola quinqueradiata spermatogonia in nibe croaker Nibea mitsukurii recipient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1aksLfL&md5=ad1afd980269d2c971e647eac8ff8e11CAS |
Ikenishi, K., and Tanaka, T. S. (2000). Spatio-temporal expression of Xenopus vasa homolog, XVLG1, in oocytes and embryos: the presence of XVLG1 RNA in somatic cells as well as germline cells. Dev. Growth Differ. 42, 95–103.
| 1:CAS:528:DC%2BD3cXktFShsLc%3D&md5=a6b65f8434785a87d09f7542896d2474CAS | 10830432PubMed |
Ikenishi, K., Tanaka, T., and Komiya, T. (1996). Spatio-temporal distribution of the protein of Xenopus vasa homologue (Xenopus vasa-like gene 1, XVLG1) in embryos. Dev. Growth Differ. 38, 527–535.
| Spatio-temporal distribution of the protein of Xenopus vasa homologue (Xenopus vasa-like gene 1, XVLG1) in embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVCltbc%3D&md5=3045a062abc929d655e2e9a5bed04482CAS |
Infante, C., Matsuoka, M. P., Asensio, E., Cañavate, J. P., Reith, M., and Manchado, M. (2008). Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. BMC Dev. Biol. 9, 28.
Knaut, H., Steinbeisser, H., Schwarz, H., and Nuüsslein-Volhard, C. (2002). An evolutionary conserved region in the vasa 3′ UTR targets RNA translation to the germ cells in the zebrafish. Curr. Biol. 12, 454–466.
| An evolutionary conserved region in the vasa 3′ UTR targets RNA translation to the germ cells in the zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlGgur4%3D&md5=17e09b5bdcfc648fbe4dfed51c9b081eCAS | 11909530PubMed |
Kobayashi, T., Kajiura-Kobayashi, H., and Nagahama, Y. (2000). Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech. Dev. 99, 139–142.
| Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1yitrc%3D&md5=c31f7102f25cde04ed426b7f8ad9428bCAS | 11091081PubMed |
Kobayashi, T., Kajiura-Kobayashi, H., and Nagahama, Y. (2002). Two isoforms of vasa homologues in a teleost fish: their differential expression during germ cell differentiation. Mech. Dev. 111, 167–171.
| Two isoforms of vasa homologues in a teleost fish: their differential expression during germ cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFOjsA%3D%3D&md5=0391bb2727485d3e381fca116aac8425CAS | 11804791PubMed |
Kobayashi, T., Takeuchi, Y., Takeuchi, T., and Yoshizaki, G. (2007). Generation of viable fish from cryopreserved primordial germ cells. Mol. Reprod. Dev. 74, 207–213.
| Generation of viable fish from cryopreserved primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2ruw%3D%3D&md5=0a09903b99b497578fa1cb1f9cd9ab04CAS | 16998845PubMed |
Krøvel, A., and Olsen, L. (2004). Sexual dimorphic expression pattern of a splice variant of zebrafish vasa during gonadal development. Dev. Biol. 271, 190–197.
| Sexual dimorphic expression pattern of a splice variant of zebrafish vasa during gonadal development.Crossref | GoogleScholarGoogle Scholar | 15196960PubMed |
Kuznicki, K., Smith, P., Leung-Chiu, W., Estevez, A., Scott, H., and Bennet, K. L. (2000). Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development 127, 2907–2916.
| 1:CAS:528:DC%2BD3cXlt1Gmt7k%3D&md5=b6cbe9b1bde9cfad972f0746fffc2690CAS | 10851135PubMed |
Linder, P., Lasko, P. F., Ashburner, M., Leroy, P., Nielsen, P. J., Nishi, K., Schiner, J., and Slonimski, P. P. (1989). Birth of the DEAD box. Nature 337, 121–122.
| Birth of the DEAD box.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFSgtLs%3D&md5=efa620199fec3ddd8ecd16c69fd080f0CAS | 2563148PubMed |
Livak, K. J., and Schmittgen, T. J. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–(ΔΔCt). Methods 25, 402–408.
| Analysis of relative gene expression data using real-time quantitative PCR and the 2–(ΔΔCt).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=c02316d2aa02af4c464251269a77c9c9CAS | 11846609PubMed |
Lüking, A., Stahl, U., and Schmidt, U. (1998). The protein family of RNA helicases. Crit. Rev. Biochem. Mol. Biol. 33, 259–296.
| The protein family of RNA helicases.Crossref | GoogleScholarGoogle Scholar | 9747670PubMed |
Lyman-Gingerich, J., and Pelegri, F. (2007). Maternal factors in fish oogenesis and embryonic development. In ‘The Fish Oocyte: From Basic Studies to Biotechnological Application’. (Eds P. J. Babin, J. Cerdá and E. Lubzens.) pp. 141–174. (Springer: Dordrecht, Netherlands.)
Miyake, A., Saito, T., Kashiwagi, T., Ando, D., Yamamoto, A., Suzuki, T., Nakatsuji, N., and Nakatsuji, T. (2006). Cloning and pattern of expression of the shiro-uo vasa gene during embryogenesis and its roles in PGC development. Int. J. Dev. Biol. 50, 619–625.
| Cloning and pattern of expression of the shiro-uo vasa gene during embryogenesis and its roles in PGC development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2hur%2FK&md5=fd534a86082e9529fc1d5ec43de891c8CAS | 16892175PubMed |
Mochizuki, K., Nishimiya-Fujisawa, C., and Fujisawa, T. (2001). Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev. Genes Evol. 211, 299–308.
| Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVGmtrw%3D&md5=c6de30888c21912e012c8f94ed801f22CAS | 11466525PubMed |
Nagasawa, K., Takeuchi, Y., Miwa, M., Higuchi, K., Morita, T., Mitsuboshi, T., Miyaki, K., Kadomura, K., and Yoshizaki, G. (2009). cDNA cloning and expression analysis of a vasa-like gene in Pacific bluefin tuna Thunnus orientalis. Fish. Sci. 75, 71–79.
| cDNA cloning and expression analysis of a vasa-like gene in Pacific bluefin tuna Thunnus orientalis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVWrs78%3D&md5=7a69e213b73b87a30bfcba08c7be2377CAS |
Olsen, L., Aasland, R., and Fjose, A. (1997). A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev. 66, 95–105.
| A vasa-like gene in zebrafish identifies putative primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FisFCrtg%3D%3D&md5=18d901f2023aa277b4ad3c222891bd8bCAS | 9376327PubMed |
Otani, S., Maegawa, S., Inoue, K., Arai, K., and Yamaha, E. (2002). The germ cell lineage identified by vas-mRNA during embryogenesis in goldfish. Zoolog. Sci. 19, 519–526.
| The germ cell lineage identified by vas-mRNA during embryogenesis in goldfish.Crossref | GoogleScholarGoogle Scholar | 12130804PubMed |
Pause, A., and Sonenberg, N. (1992). Mutational analysis of a DEAD-box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11, 2643–2654.
| 1:CAS:528:DyaK38XltVOht74%3D&md5=961614873f56da0b2df96af3ed4448bcCAS | 1378397PubMed |
Ponce, M., Infante, C., Funes, V., and Manchado, M. (2008). Molecular characterization and gene expression analysis of insulin-like growth factors I and II in the red banded seabream, Pagrus auriga: transcriptional regulation by growth hormone. Comp. Biochem. Physiol. B 150, 418–426.
| Molecular characterization and gene expression analysis of insulin-like growth factors I and II in the red banded seabream, Pagrus auriga: transcriptional regulation by growth hormone.Crossref | GoogleScholarGoogle Scholar | 18539063PubMed |
Raghuveer, K., and Senthilkumaran, B. (2010). Cloning and differential expression pattern of vasa in the developing and recrudescing gonads of catfish, Clarias gariepinus. Comp. Biochem. Physiol. A 157, 79–85.
| Cloning and differential expression pattern of vasa in the developing and recrudescing gonads of catfish, Clarias gariepinus.Crossref | GoogleScholarGoogle Scholar |
Saito, J., Otani, S., Fujimoto, T., Suzuki, T., Nakatsuji, T., Arai, K., and Yamaha, E. (2004). The germ line lineage in ukigori, Gymnogobius species (Teleostei: Gobiidae) during embryonic development. Int. J. Dev. Biol. 48, 1079–1085.
| The germ line lineage in ukigori, Gymnogobius species (Teleostei: Gobiidae) during embryonic development.Crossref | GoogleScholarGoogle Scholar |
Saitou, N., and Nei, M. (1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
| 1:STN:280:DyaL1c7ovFSjsA%3D%3D&md5=76467957113ec4a20e313b0ef4daa41cCAS | 3447015PubMed |
Sarasquete, C., and Gutiérrez, M. (2005). New tetrachromic VOF stain (type iii-g.s) for normal and pathological fish tissues. Eur. J. Histochem. 49, 105–114.
Shibata, N., Umesono, Y., Orii, H., Sakurai, T., Watanabe, K., and Agata, K. (1999). Expression of vasa (vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev. Biol. 206, 73–87.
| Expression of vasa (vas)-related genes in germline cells and totipotent somatic stem cells of planarians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtVehu7w%3D&md5=6e0ed0c41b6eac8b2ca7c8d0c5ea535dCAS | 9918696PubMed |
Shinomiya, A., Tanaka, M., Kobayashi, T., Nagahama, Y., and Hamaguchi, S. (2000). The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes. Dev. Growth Differ. 42, 317–326.
| The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvVegsLw%3D&md5=e0ccaffc926d0d424f78228cadd8205fCAS | 10969731PubMed |
Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.
| MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGrsL8%3D&md5=e4a20a2d91a699f9d02f53f216b96c4bCAS | 17488738PubMed |
Wang, X. G., Bartfai, R., Sleptsova-Freidrich, I., and Orban, L. (2007). The timing and extent of ‘juvenile ovary’ phase are highly variable during zebrafish testis differentiation. J. Fish Biol. 70, 33–44.
| The timing and extent of ‘juvenile ovary’ phase are highly variable during zebrafish testis differentiation.Crossref | GoogleScholarGoogle Scholar |
Wong, T., Gothilf, Y., Zmora, N., Kight, K. E., Meiri, I., Elizur, A., and Zohar, Y. (2004). Developmental expression of three forms of gonadotrophin-releasing hormone and ontogeny of the hypothalamic–pituitary–gonadal axis in gilthead seabream (Sparus aurata). Biol. Reprod. 71, 1026–1035.
| Developmental expression of three forms of gonadotrophin-releasing hormone and ontogeny of the hypothalamic–pituitary–gonadal axis in gilthead seabream (Sparus aurata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFeisro%3D&md5=46c3e11af8b8e7aff4976bb048f1530cCAS | 15163612PubMed |
Yoon, C., Kawakami, K., and Hopkins, N. (1997). Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157–3165.
| 1:CAS:528:DyaK2sXlvVehs7Y%3D&md5=f52014f42e86645d1401d6c02a25fefeCAS | 9272956PubMed |
Yoshizaki, G., Takeuchi, Y., Sawatari, E., Kobayashi, T., and Takeuchi, T. (2005). Green fluorescent protein labelling of primordial germ cells using a nontransgenic method and its application for germ cell transplantation in salmonidae. Biol. Reprod. 73, 88–93.
| Green fluorescent protein labelling of primordial germ cells using a nontransgenic method and its application for germ cell transplantation in salmonidae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Srt78%3D&md5=0d056acaf3e5ae859257fd07b507a208CAS | 15744027PubMed |
Yoshizaki, G., Fujinuma, K., Iwasaki, Y., Okutsu, T., Shikina, S., Yazawa, R., and Takeuchi, Y. (2011). Spermatogonial transplantation in fish: a novel method for the preservation of genetic resources. Comp. Biochem. Physiol. Part D Genomics Proteomics 6, 56–61.
Zuckerkandl, E., and Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In ‘Evolving Genes and Proteins’ (Eds V. Bryson and H. J. Vogel.) pp. 97–166. (Academic Press: New York.)