Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Follicle development in cryopreserved bitch ovarian tissue grafted to immunodeficient mouse

L. Commin A B , S. Buff A , E. Rosset A , C. Galet A , A. Allard A , P. Bruyere A , T. Joly A , P. Guérin A and V. Neto A
+ Author Affiliations
- Author Affiliations

A Equipe Cryobio, Unité Propre de Soutien de Programme Interaction Cellule Environnement, VetAgroSup/ISARA Lyon, Université de Lyon, VetAgro Sup, 2011.03.101, UPSP I.C.E. – Equipe CRYOBIO, F-69280 Marcy l’Etoile, France.

B Corresponding author. Email: l.commin@vetagro-sup.fr

Reproduction, Fertility and Development 24(3) 461-471 https://doi.org/10.1071/RD11166

Abstract

The present study evaluated: (1) in vivo follicular development in canine ovarian tissue after slow freezing and xenotransplantation; and (2) the use of erythropoietin (EPO) as an angiogenic factor to optimise the transplantation procedure. Frozen–thawed ovarian tissue from five bitches was grafted into severe combined immunodeficient (SCID) mice (n = 47) treated with or without EPO (500 IU kg–1, once daily for 3 days) (Groups A and B, respectively) and analysed after 0, 1, 8 or 16 weeks. Follicle grade, follicle density, follicle morphology and stromal cells density were assessed by histological analysis, whereas vascularisation of the graft was quantified by immunohistochemistry with anti-α-smooth muscle actin antibody. Despite a massive loss of follicles after grafting, secondary follicle density was higher at 8 and 16 weeks than at 1 week regardless of EPO treatment. EPO significantly improved early follicle morphology and stromal cell density after 8 weeks and blood vessel density at 16 weeks after transplantation (P < 0.05). Intact secondary follicles with more than three granulosa cells layers were observed 16 weeks after transplantation. The results suggest that canine ovarian tissue can be successfully preserved by our slow-freezing protocol because the tissue showed follicular growth after xenotransplantation. EPO treatment did not lessen the massive loss of follicles after transplantation.

Additional keywords: cryopreservation, dog, follicle growth, ischaemia, xenograft.


References

Almodin, C. G., Minguetti-Camara, V. C., Meister, H., Ferreira, J. O., Franco, R. L., Cavalcante, A. A., Radaelli, M. R., Bahls, A. S., Moron, A. F., and Murta, C. G. (2004). Recovery of fertility after grafting of cryopreserved germinative tissue in female rabbits following radiotherapy. Hum. Reprod. 19, 1287–1293.
Recovery of fertility after grafting of cryopreserved germinative tissue in female rabbits following radiotherapy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c3msFWqsA%3D%3D&md5=1688fa144be29909c36bca69b51c6939CAS | 15117903PubMed |

Andersen, A. C., and Simpson, M. E. (1973). ‘The Ovary and Reproductive Cycle of the Dog (Beagle).’ (Geron-X: Los Altos, CA.)

Baird, D. T., Webb, R., Campbell, B. K., Harkness, L. M., and Gosden, R. G. (1999). Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at –196°C. Endocrinology 140, 462–471.
Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at –196°C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFWrtA%3D%3D&md5=c8e041a66de6942f47dd55c87d68edf7CAS | 9886858PubMed |

Bosch, P., Hernandez-Fonseca, H. J., Miller, D. M., Wininger, J. D., Massey, J. B., Lamb, S. V., and Brackett, B. G. (2004). Development of antral follicles in cryopreserved cat ovarian tissue transplanted to immunodeficient mice. Theriogenology 61, 581–594.
Development of antral follicles in cryopreserved cat ovarian tissue transplanted to immunodeficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1Oksb4%3D&md5=20b602be1638481d717526c5f6755207CAS | 14662154PubMed |

Calvillo, L., Latini, R., Kajstura, J., Leri, A., Anversa, P., Ghezzi, P., Salio, M., Cerami, A., and Brines, M. (2003). Recombinant human erythropoietin protects the myocardium from ischemia–reperfusion injury and promotes beneficial remodeling. Proc. Natl Acad. Sci. USA 100, 4802–4806.
Recombinant human erythropoietin protects the myocardium from ischemia–reperfusion injury and promotes beneficial remodeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12nsbs%3D&md5=aeae67feb754287aa4e860d507cd5765CAS | 12663857PubMed |

Candy, C. J., Wood, M. J., and Whittingham, D. G. (1997). Effect of cryoprotectants on the survival of follicles in frozen mouse ovaries. J. Reprod. Fertil. 110, 11–19.
Effect of cryoprotectants on the survival of follicles in frozen mouse ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVagu7c%3D&md5=a6ab74b00546939df86a00b1f44b1896CAS | 9227352PubMed |

Celestino, J. J., dos Santos, R. R., Lopes, C. A., Martins, F. S., Matos, M. H., Melo, M. A., Bao, S. N., Rodrigues, A. P., Silva, J. R., and de Figueiredo, J. R. (2008). Preservation of bovine preantral follicle viability and ultra-structure after cooling and freezing of ovarian tissue. Anim. Reprod. Sci. 108, 309–318.
Preservation of bovine preantral follicle viability and ultra-structure after cooling and freezing of ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFais7zN&md5=c56c935ee5146886a86f78755dd779aaCAS | 17945440PubMed |

Cleary, M., Snow, M., Paris, M., Shaw, J., Cox, S. L., and Jenkin, G. (2001). Cryopreservation of mouse ovarian tissue following prolonged exposure to an ischemic environment. Cryobiology 42, 121–133.
Cryopreservation of mouse ovarian tissue following prolonged exposure to an ischemic environment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mzpsleltg%3D%3D&md5=b9f2f210c1a263e53854c9cdd63bcf6bCAS | 11448114PubMed |

Cleary, M., Paris, M. C., Shaw, J., Jenkin, G., and Trounson, A. (2003). Effect of ovariectomy and graft position on cryopreserved common wombat (Vombatus ursinus) ovarian tissue following xenografting to nude mice. Reprod. Fertil. Dev. 15, 333–342.
Effect of ovariectomy and graft position on cryopreserved common wombat (Vombatus ursinus) ovarian tissue following xenografting to nude mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2Fos1Oksw%3D%3D&md5=29d4abd56996ab5a0a78083b1cb3c9a7CAS | 14975231PubMed |

Demirci, B., Salle, B., Frappart, L., Franck, M., Guerin, J. F., and Lornage, J. (2002). Morphological alterations and DNA fragmentation in oocytes from primordial and primary follicles after freezing–thawing of ovarian cortex in sheep. Fertil. Steril. 77, 595–600.
Morphological alterations and DNA fragmentation in oocytes from primordial and primary follicles after freezing–thawing of ovarian cortex in sheep.Crossref | GoogleScholarGoogle Scholar | 11872218PubMed |

Deng, X. H., Xu, A. R., Chao, L., Yu, H. L., Zhen, J. H., Hashimoto, S., and Morimoto, Y. (2007). Effect of different sites for cryopreserved ovarian tissue implantation in rabbit. Hum. Reprod. 22, 662–668.
Effect of different sites for cryopreserved ovarian tissue implantation in rabbit.Crossref | GoogleScholarGoogle Scholar | 17114193PubMed |

Dissen, G. A., Lara, H. E., Fahrenbach, W. H., Costa, M. E., and Ojeda, S. R. (1994). Immature rat ovaries become revascularized rapidly after autotransplantation and show a gonadotropin-dependent increase in angiogenic factor gene expression. Endocrinology 134, 1146–1154.
Immature rat ovaries become revascularized rapidly after autotransplantation and show a gonadotropin-dependent increase in angiogenic factor gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitV2nsLg%3D&md5=8aaec9a2b2144a719f6dc5f7ee966082CAS | 8119153PubMed |

Donnez, J., Dolmans, M. M., Demylle, D., Jadoul, P., Pirard, C., Squifflet, J., Martinez-Madrid, B., and van Langendonckt, A. (2004). Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364, 1405–1410.
Livebirth after orthotopic transplantation of cryopreserved ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2crhvVOhtg%3D%3D&md5=478117486863dc544a223a6f9301ab6bCAS | 15488215PubMed |

Donnez, J., Silber, S., Andersen, C. Y., Demeestere, I., Piver, P., Meirow, D., Pellicer, A., and Dolmans, M. M. (2011). Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births. Ann. Med. 43, 437–450.
Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births.Crossref | GoogleScholarGoogle Scholar | 21226660PubMed |

Elliott, S., Pham, E., and Macdougall, I. C. (2008). Erythropoietins: a common mechanism of action. Exp. Hematol. 36, 1573–1584.
Erythropoietins: a common mechanism of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyhsr%2FM&md5=24252099abf6fc311f515d1fa1d38212CAS | 18922615PubMed |

Flurkey, K., Gee, D. M., Sinha, Y. N., Wisner, J. R., and Finch, C. E. (1982). Age effects on luteinizing hormone, progesterone and prolactin in proestrous and acyclic C57BL/6j mice. Biol. Reprod. 26, 835–846.
Age effects on luteinizing hormone, progesterone and prolactin in proestrous and acyclic C57BL/6j mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksV2qtr8%3D&md5=2418eafa0675f239bf1308990db7365bCAS | 7201329PubMed |

Gosden, R. G., Baird, D. T., Wade, J. C., and Webb, R. (1994). Restoration of fertility to oophorectomized sheep by ovarian autografts stored at –196 degrees C. Hum. Reprod. 9, 597–603.
| 1:STN:280:DyaK2czitFGiuw%3D%3D&md5=ba72fc6040678cf719754b3bafa401c1CAS | 8046009PubMed |

Gougeon, A. (1986). Dynamics of follicular growth in the human: a model from preliminary results. Hum. Reprod. 1, 81–87.
| 1:STN:280:DyaL2s7ms1Kgtg%3D%3D&md5=14688a665e54d2e958c4fc6691e3d0c6CAS | 3558758PubMed |

Haroon, Z. A., Amin, K., Jiang, X., and Arcasoy, O. M. (2003). A novel role for erythropoietin during fibrin-induced wound-healing response. Am. J. Pathol. 163, 993–1000.
A novel role for erythropoietin during fibrin-induced wound-healing response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVCju7k%3D&md5=db31e7718b625d7a765e602ac8ab9e0eCAS | 12937140PubMed |

Hovatta, O. (2005). Methods for cryopreservation of human ovarian tissue. Reprod. Biomed. Online 10, 729–734.
Methods for cryopreservation of human ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 15970001PubMed |

Hovatta, O., Silye, R., Krausz, T., Abir, R., Margara, R., Trew, G., Lass, A., and Winston, R. M. (1996). Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol–sucrose as cryoprotectants. Hum. Reprod. 11, 1268–1272.
| 1:CAS:528:DyaK28XltVant7k%3D&md5=cbfc9dbe4c6fb030c2de3aa359c33a1aCAS | 8671438PubMed |

Ishijima, T., Kobayashi, Y., Lee, D. S., Ueta, Y. Y., Matsui, M., Lee, J. Y., Suwa, Y., Miyahara, K., and Suzuki, H. (2006). Cryopreservation of canine ovaries by vitrification. J. Reprod. Dev. 52, 293–299.
Cryopreservation of canine ovaries by vitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlKisbg%3D&md5=23305658b34466bc85e4a4638b380d84CAS | 16394621PubMed |

Ishijima, T., Abe, Y., and Suzuki, H. (2009). Follicular loss of the cryopreserved canine ovary after xenotransplantation. J. Mamm. Ova Res. 26, 61–65.
Follicular loss of the cryopreserved canine ovary after xenotransplantation. Crossref | GoogleScholarGoogle Scholar |

Israely, T., Dafni, H., Granot, D., Nevo, N., Tsafriri, A., and Neeman, M. (2003). Vascular remodeling and angiogenesis in ectopic ovarian transplants: a crucial role of pericytes and vascular smooth muscle cells in maintenance of ovarian grafts. Biol. Reprod. 68, 2055–2064.
Vascular remodeling and angiogenesis in ectopic ovarian transplants: a crucial role of pericytes and vascular smooth muscle cells in maintenance of ovarian grafts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1GgsL4%3D&md5=5258f44a727f7c36fb65728edc3413beCAS | 12606340PubMed |

Israely, T., Nevo, N., Harmelin, A., Neeman, M., and Tsafriri, A. (2006). Reducing ischaemic damage in rodent ovarian xenografts transplanted into granulation tissue. Hum. Reprod. 21, 1368–1379.
Reducing ischaemic damage in rodent ovarian xenografts transplanted into granulation tissue.Crossref | GoogleScholarGoogle Scholar | 16459346PubMed |

Johnson, M. H., and Pickering, S. J. (1987). The effect of dimethylsulphoxide on the microtubular system of the mouse oocyte. Development 100, 313–324.
| 1:CAS:528:DyaL2sXksFKltL0%3D&md5=cae09cc6efece3f6ec97c374827dcfe6CAS | 3652973PubMed |

Kato, S., Amano, H., Ito, Y., Eshima, K., Aoyama, N., Tamaki, H., Sakagami, H., Satoh, Y., Izumi, T., and Majima, M. (2010). Effect of erythropoietin on angiogenesis with the increased adhesion of platelets to the microvessels in the hind-limb ischemia model in mice. J. Pharmacol. Sci. 112, 167–175.
Effect of erythropoietin on angiogenesis with the increased adhesion of platelets to the microvessels in the hind-limb ischemia model in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVSltrg%3D&md5=d42c20dc73bfb19301e3230a8b6f11f2CAS | 20134117PubMed |

Kim, S. S., Kang, H. G., Kim, N. H., Lee, H. C., and Lee, H. H. (2005). Assessment of the integrity of human oocytes retrieved from cryopreserved ovarian tissue after xenotransplantation. Hum. Reprod. 20, 2502–2508.
Assessment of the integrity of human oocytes retrieved from cryopreserved ovarian tissue after xenotransplantation.Crossref | GoogleScholarGoogle Scholar | 15946997PubMed |

Kim, G. A., Kim, H. Y., Kim, J. W., Lee, G., Lee, E., Ahn, J. Y., Park, J. H., and Lim, J. M. (2011). Effectiveness of slow freezing and vitrification for long-term preservation of mouse ovarian tissue. Theriogenology 75, 1045–1051.
Effectiveness of slow freezing and vitrification for long-term preservation of mouse ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3jt1Snsw%3D%3D&md5=f1bcd2eac1388a78b323421d27e235c9CAS | 21220167PubMed |

Knight, P. G., and Glister, C. (2006). TGF-beta superfamily members and ovarian follicle development. Reproduction 132, 191–206.
TGF-beta superfamily members and ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjsr0%3D&md5=e3952199251c52a7267a52410fc3d2c7CAS | 16885529PubMed |

Liu, J., Van der Elst, J., Van den Broecke, R., and Dhont, M. (2002). Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum. Reprod. 17, 605–611.
Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries.Crossref | GoogleScholarGoogle Scholar | 11870111PubMed |

Luvoni, G. C., Chigioni, S., Allievi, E., and Macis, D. (2005). Factors involved in vivo and in vitro maturation of canine oocytes. Theriogenology 63, 41–59.
Factors involved in vivo and in vitro maturation of canine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrt7nO&md5=cfa7c2a3a9ad069281198d3c9d497e00CAS | 15589272PubMed |

Marcondes, F. K., Bianchi, F. J., and Tanno, A. P. (2002). Determination of the estrous cycle phases of rats: some helpful considerations. Braz. J. Biol. 62, 609–614.
Determination of the estrous cycle phases of rats: some helpful considerations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7ksValsA%3D%3D&md5=5cee06de98e55b31e4ccf87a9013832aCAS | 12659010PubMed |

Metcalfe, S. S., Shaw, J. M., and Gunn, I. M. (2001). Xenografting of canine ovarian tissue to ovariectomized severe combined immunodeficient (SCID) mice. J. Reprod. Fertil. Suppl. 57, 323–329.
| 1:STN:280:DC%2BD38%2Fmt1WisA%3D%3D&md5=64b914113de938a241931d938fbb8898CAS | 11787169PubMed |

Neto, V., Buff, S., Lornage, J., Bottollier, B., Guerin, P., and Joly, T. (2008a). Effects of different freezing parameters on the morphology and viability of preantral follicles after cryopreservation of doe rabbit ovarian tissue. Fertil. Steril. 89, 1348–1356.
Effects of different freezing parameters on the morphology and viability of preantral follicles after cryopreservation of doe rabbit ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12qsLjL&md5=f04ca2fceab92d36091a5fd5231df1bdCAS | 17604027PubMed |

Neto, V., Joly, T., Salvetti, P., Lefranc, A., Corrao, N., Guerin, P., and Buff, S. (2008b). Ovarian tissue cryopreservation in the doe rabbit: from freezing to birth. Reprod. Domest. Anim. 43, 211..

Newton, H., Fisher, J., Arnold, J. R., Pegg, D. E., Faddy, M. J., and Gosden, R. G. (1998). Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum. Reprod. 13, 376–380.
Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlGhtrc%3D&md5=a3dcd177f6846e3f7b2a68851ad24a93CAS | 9557842PubMed |

Nugent, D., Newton, H., Gallivan, L., and Gosden, R. G. (1998). Protective effect of vitamin E on ischaemia–reperfusion injury in ovarian grafts. J. Reprod. Fertil. 114, 341–346.
Protective effect of vitamin E on ischaemia–reperfusion injury in ovarian grafts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsV2htw%3D%3D&md5=cd74f8e4252673dfd2d297b915f47d9bCAS | 10070363PubMed |

Oktay, K., and Karlikaya, G. (2000). Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N. Engl. J. Med. 342, 1919..
Ovarian function after transplantation of frozen, banked autologous ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 10877641PubMed |

Paris, M. C., Snow, M., Cox, S. L., and Shaw, J. M. (2004). Xenotransplantation: a tool for reproductive biology and animal conservation? Theriogenology 61, 277–291.
Xenotransplantation: a tool for reproductive biology and animal conservation?Crossref | GoogleScholarGoogle Scholar | 14662128PubMed |

R Development Core Team (2005). R: a language and environment for statistical computing, reference index version 2.2.1. (R Foundation for Statistical Computing: Vienna, Austria.)

Rodrigues, B. A., and Rodrigues, J. L. (2006). Responses of canine oocytes to in vitro maturation and in vitro fertilization outcome. Theriogenology 66, 1667–1672.
Responses of canine oocytes to in vitro maturation and in vitro fertilization outcome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28rlsFersQ%3D%3D&md5=a93b2f3fcaa09e003cc85ddac403b882CAS | 16580716PubMed |

Rodrigues, B. A., and Rodrigues, J. A. (2010). In vitro maturation of canine oocytes: a unique conundrum. Anim. Reprod. 7, 3–15.

Salle, B., Demirci, B., Franck, M., Rudigoz, R. C., Guerin, J. F., and Lornage, J. (2002). Normal pregnancies and live births after autograft of frozen–thawed hemi-ovaries into ewes. Fertil. Steril. 77, 403–408.
Normal pregnancies and live births after autograft of frozen–thawed hemi-ovaries into ewes.Crossref | GoogleScholarGoogle Scholar | 11821105PubMed |

Santos, R. R., van den Hurk, R., Rodrigues, A. P., Costa, S. H., Martins, F. S., Matos, M. H., Celestino, J. J., and Figueiredo, J. R. (2007). Effect of cryopreservation on viability, activation and growth of in situ and isolated ovine early-stage follicles. Anim. Reprod. Sci. 99, 53–64.
Effect of cryopreservation on viability, activation and growth of in situ and isolated ovine early-stage follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1GmsL0%3D&md5=4e9d8f3992c6653348cf255b6ca406c3CAS | 16787716PubMed |

Santos, R. R., Knijn, H. M., Vos, P. L., Oei, C. H., van Loon, T., Colenbrander, B., Gadella, B. M., van den Hurk, R., and Roelen, B. A. (2009). Complete follicular development and recovery of ovarian function of frozen–thawed, autotransplanted caprine ovarian cortex. Fertil. Steril. 91, 1455–1458.
Complete follicular development and recovery of ovarian function of frozen–thawed, autotransplanted caprine ovarian cortex.Crossref | GoogleScholarGoogle Scholar | 18722611PubMed |

Santos, R. R., Amorim, C., Cecconi, S., Fassbender, M., Imhof, M., Lornage, J., Paris, M., Schoenfeldt, V., and Martinez-Madrid, B. (2010). Cryopreservation of ovarian tissue: an emerging technology for female germline preservation of endangered species and breeds. Anim. Reprod. Sci. 122, 151–163.
Cryopreservation of ovarian tissue: an emerging technology for female germline preservation of endangered species and breeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahs73E&md5=9c4753eb460750f67e1b6d2434820f98CAS | 20832203PubMed |

Schmidt, K. L., Ernst, E., Byskov, A. G., Nyboe Andersen, A., and Yding Andersen, C. (2003). Survival of primordial follicles following prolonged transportation of ovarian tissue prior to cryopreservation. Hum. Reprod. 18, 2654–2659.
Survival of primordial follicles following prolonged transportation of ovarian tissue prior to cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srmslygsA%3D%3D&md5=101ec1c2a8be74f1a5359987bf4db428CAS | 14645187PubMed |

Schnorr, J., Oehninger, S., Toner, J., Hsiu, J., Lanzendorf, S., Williams, R., and Hodgen, G. (2002). Functional studies of subcutaneous ovarian transplants in non-human primates: steroidogenesis, endometrial development, ovulation, menstrual patterns and gamete morphology. Hum. Reprod. 17, 612–619.
Functional studies of subcutaneous ovarian transplants in non-human primates: steroidogenesis, endometrial development, ovulation, menstrual patterns and gamete morphology.Crossref | GoogleScholarGoogle Scholar | 11870112PubMed |

Soleimani, R., Heytens, E., Van den Broecke, R., Rottiers, I., Dhont, M., Cuvelier, C. A., and De Sutter, P. (2010). Xenotransplantation of cryopreserved human ovarian tissue into murine back muscle. Hum. Reprod. 25, 1458–1470.
Xenotransplantation of cryopreserved human ovarian tissue into murine back muscle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3czksVCgtw%3D%3D&md5=382161769075f88d935a6fe23c5639c6CAS | 20299384PubMed |

Suzuki, H., Ishijima, T., Maruyama, S., Yanagimoto Ueta, Y., Abe, Y., and Saitoh, H. (2008). Beneficial effect of desialylated erythropoietin administration on the frozen-thawed canine ovarian xenotransplantation. J. Assist. Reprod. Genet. 25, 571–575.
Beneficial effect of desialylated erythropoietin administration on the frozen-thawed canine ovarian xenotransplantation.Crossref | GoogleScholarGoogle Scholar | 18972200PubMed |

Wang, X., Catt, S., Pangestu, M., and Temple-Smith, P. (2009). Live offspring from vitrified blastocysts derived from fresh and cryopreserved ovarian tissue grafts of adult mice. Reproduction 138, 527–535.
Live offspring from vitrified blastocysts derived from fresh and cryopreserved ovarian tissue grafts of adult mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOgtrvF&md5=52302d304862a4e8aa2e995ea6a59d65CAS | 19556437PubMed |

Wildt, D. E. (2000). Genome resource banking for wildlife research, management and conservation. ILAR J. 41, 228–234.
| 1:STN:280:DC%2BD3M3jt1eiuw%3D%3D&md5=043da699a66b8999c77dea837d428200CAS | 11123183PubMed |

Wood, G. A., Fata, J. E., Watson, K. L., and Khokha, R. (2007). Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus. Reproduction 133, 1035–1044.
Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlGmsro%3D&md5=76f832fee8b893e789c1257005d9328cCAS | 17616732PubMed |