Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Identification of a β1 integrin isoform with restricted tissue expression in a teleost fish

Patricia Castillo-Briceño A , Isabel Cabas A , Marta Arizcun B , Jose Meseguer A , Victoriano Mulero A and Alfonsa García-Ayala A C
+ Author Affiliations
- Author Affiliations

A Department of Cell Biology and Histology, Faculty of Biology, Campus de Espinardo, University of Murcia, Murcia 30100, Spain.

B Oceanographic Centre of Murcia, Spanish Oceanographic Institute (IEO), Puerto de Mazarrón, 30860 Murcia, Spain.

C Corresponding author. Email: agayala@um.es

Reproduction, Fertility and Development 23(5) 654-664 https://doi.org/10.1071/RD10351
Submitted: 31 December 2010  Accepted: 12 January 2011   Published: 5 May 2011

Abstract

The composition and organisation of extracellular matrix (ECM)-related molecules change during development. These components interact with different cell surface receptors to modulate the transduction of signals for cell growth, differentiation, migration, proliferation and apoptosis. Previous findings in the teleost fish gilthead seabream (Sparus aurata L., Teleostei), a marine protandrous hermaphrodite fish, showed that endocrine and immune stimuli are able to modulate the expression of ECM-related molecules, as well as specific correlations between them. In the present study, quantitative reverse transcription–polymerase chain reaction was used to examine the gene expression profile of β1 integrin isoform b (ITGB1b) and its possible role in reproductive physiology, especially in relation to spermatogenesis. Expression profiles were analysed in the context of the reproductive cycle (RC) and in relation with other ECM-related molecules, including matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, tissue-specific inhibitor of metalloproteinase (TIMP)-2a, TIMP-2b, collagen (COL1A1) and ITGB1a. Expression of ITGB1b was found in the testis and brain and, to some extent, in endothelial cells. In contrast, ITGB1a was expressed ubiquitously. In the testis, the ITGB1b expression peaked during spermatogenesis, whereas the expression of the other ECM-related molecules is induced mainly during the post-spawning stage, both stages of marked tissue remodelling during the first and second RC in males. In addition, in fish exposed to the endocrine disruptor 17α-ethynyloestradiol (at 5 and 50 μg g–1 food during 7, 14 and 21 days), ITGB1b expression in the testis was inhibited in a dose- and time-dependent manner and was related to reduced serum levels of testosterone. Together, these results suggest a different functionality for the two ITGB1 isoforms in the gilthead seabream, where ITGB1b is more specifically involved in reproduction. This is the first report of an ITGB1 gene isoform whose expression is restricted to endocrine-related tissues in vertebrates.

Additional keywords: 17α-ethynyloestradiol, development, extracellular matrix, gene expression, spermatogenesis, testis, testosterone.


References

Angus, R. A., Stanko, J., Jenkins, R. L., and Watson, R. D. (2005). Effects of 17alpha-ethynylestradiol on sexual development of male western mosquitofish, Gambusia affinis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 140, 330–339.
Effects of 17alpha-ethynylestradiol on sexual development of male western mosquitofish, Gambusia affinis.Crossref | GoogleScholarGoogle Scholar | 15922671PubMed |

Bednarek, N., Clément, Y., Lelièvre, V., Olivier, P., Loron, G., Garnotel, R., and Gressens, P. (2009). Ontogeny of MMPs and TIMPs in the murine neocortex. Pediatr. Res. 65, 296–300.
Ontogeny of MMPs and TIMPs in the murine neocortex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslynt7k%3D&md5=e5e92f1bb9a98cd625beffd2e6b3311aCAS | 19092727PubMed |

Bowen, J. A., and Hunt, J. S. (2000). The role of integrins in reproduction. Proc. Soc. Exp. Biol. Med. 223, 331–343.
The role of integrins in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlCqtrc%3D&md5=84248272b5400d0ba20277cfc83b0d4cCAS | 10721002PubMed |

Butler, G. S., and Overall, C. M. (2009). Updated biological roles for matrix metalloproteinases and new ‘intracellular’ substrates revealed by degradomics. Biochemistry 48, 10 830–10 845.
Updated biological roles for matrix metalloproteinases and new ‘intracellular’ substrates revealed by degradomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlaltbrO&md5=7c14bac352dea437cf7adac2d430ce3eCAS |

Castillo-Briceño, P., Sepulcre, M. P., Chaves-Pozo, E., Meseguer, J., García-Ayala, A., and Mulero, V. (2009). Collagen regulates the activation of professional phagocytes of the teleost fish gilthead seabream. Mol. Immunol. 46, 1409–1415.
Collagen regulates the activation of professional phagocytes of the teleost fish gilthead seabream.Crossref | GoogleScholarGoogle Scholar | 19185348PubMed |

Castillo-Briceño, P., Arizcun-Arizcun, M., Meseguer, J., Mulero, V., and García-Ayala, A. (2010). Correlated expression profile of extracellular matrix-related molecules during the inflammatory response of the teleost fish gilthead seabream. Dev. Comp. Immunol. 34, 1051–1058.
Correlated expression profile of extracellular matrix-related molecules during the inflammatory response of the teleost fish gilthead seabream.Crossref | GoogleScholarGoogle Scholar | 20488200PubMed |

Ceauşu, M., Curcă, C., Dermengiu, D., and Ardeleanu, C. (2009). Simultaneous immunophenotypical assessment of troponin and extracellular matrix molecules in myocardium of patients with sudden cardiac death. Rom. J. Morphol. Embryol. 50, 103–106.
| 19221653PubMed |

Chaves-Pozo, E., Mulero, V., Meseguer, J., and García Ayala, A. (2005). An overview of cell renewal in the testis throughout the reproductive cycle of a seasonal breeding teleost, the gilthead seabream (Sparus aurata L). Biol. Reprod. 72, 593–601.
An overview of cell renewal in the testis throughout the reproductive cycle of a seasonal breeding teleost, the gilthead seabream (Sparus aurata L).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVeis7g%3D&md5=0798f0a1c4e35fb80dba6105482e97c5CAS | 15548730PubMed |

Chaves-Pozo, E., Liarte, S., Vargas-Chacoff, L., García-López, A., Mulero, V., Meseguer, J., Mancera, J. M., and García-Ayala, A. (2007). 17Beta-estradiol triggers postspawning in spermatogenically active gilthead seabream (Sparus aurata L.) males. Biol. Reprod. 76, 142–148.
17Beta-estradiol triggers postspawning in spermatogenically active gilthead seabream (Sparus aurata L.) males.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1OisQ%3D%3D&md5=2dc7c09c272132767a9720ea5e33ba65CAS | 17050857PubMed |

Chaves-Pozo, E., Castillo-Briceño, P., García-Alcázar, A., Meseguer, J., Mulero, V., and García-Ayala, A. (2008a). A role for matrix metalloproteinases in granulocyte infiltration and testicular remodelation in a seasonal breeding teleost. Mol. Immunol. 45, 2820–2830.
A role for matrix metalloproteinases in granulocyte infiltration and testicular remodelation in a seasonal breeding teleost.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFKksbo%3D&md5=cb39b807706e8af0e3ec2414f4b9095cCAS | 18342940PubMed |

Chaves-Pozo, E., Liarte, S., Fernández-Alacid, L., Abellán, E., Meseguer, J., Mulero, V., and García-Ayala, A. (2008b). Pattern of expression of immune-relevant genes in the gonad of a teleost, the gilthead seabream (Sparus aurata L.). Mol. Immunol. 45, 2998–3011.
Pattern of expression of immune-relevant genes in the gonad of a teleost, the gilthead seabream (Sparus aurata L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFKkt7w%3D&md5=05dde9aa6033dd7864606ec10b221dabCAS | 18325594PubMed |

Chaves-Pozo, E., Arjona, F. J., García-López, A., García-Alcázar, A., Meseguer, J., and García-Ayala, A. (2008c). Sex steroids and metabolic parameter levels in a seasonal breeding fish (Sparus aurata L.). Gen. Comp. Endocrinol. 156, 531–536.
Sex steroids and metabolic parameter levels in a seasonal breeding fish (Sparus aurata L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsF2qsLo%3D&md5=aa36e5cc180e971385bacbd0ebdcba35CAS | 18407272PubMed |

Chaves-Pozo, E., Liarte, S., Mulero, I., Abellán, E., Meseguer, J., and García-Ayala, A. (2009). Early presence of immune cells in the developing gonad of the gilthead seabream (Sparus aurata Linnaeus 1758). J. Reprod. Dev. 55, 440–445.
Early presence of immune cells in the developing gonad of the gilthead seabream (Sparus aurata Linnaeus 1758).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOmtLbF&md5=79a0064b8a82a0e3aa84415e1e986a5bCAS | 19404001PubMed |

Crawford, B. D., and Pilgrim, D. B. (2005). Ontogeny and regulation of matrix metalloproteinase activity in the zebrafish embryo by in vitro and in vivo zymography. Dev. Biol. 286, 405–414.
Ontogeny and regulation of matrix metalloproteinase activity in the zebrafish embryo by in vitro and in vivo zymography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWntLfF&md5=d563c562e9f8d18f2377103247680511CAS | 16112664PubMed |

Delon, I., and Brown, N. H. (2007). Integrins and the actin cytoskeleton. Curr. Opin. Cell Biol. 19, 43–50.
Integrins and the actin cytoskeleton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVOhtQ%3D%3D&md5=91c5111ffb88c335983cfe589f114a35CAS | 17184985PubMed |

Djouad, F., Delorme, B., Maurice, M., Bony, C., Apparailly, F., Louis-Plence, P., Canovas, F., Charbord, P., Noël, D., and Jorgensen, C. (2007). Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Res. Ther. 9, R33.
Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes.Crossref | GoogleScholarGoogle Scholar | 17391539PubMed |

Estêvão, M. D., Redruello, B., Canario, A. V., and Power, D. M. (2005). Ontogeny of osteonectin expression in embryos and larvae of sea bream (Sparus auratus L.). Gen. Comp. Endocrinol. 142, 155–162.
Ontogeny of osteonectin expression in embryos and larvae of sea bream (Sparus auratus L.).Crossref | GoogleScholarGoogle Scholar | 15862559PubMed |

Gall, C. M., Pinkstaff, J. K., Lauterborn, J. C., Xie, Y., and Lynch, G. (2003). Integrins regulate neuronal neurotrophin gene expression through effects on voltage-sensitive calcium channels. Neuroscience 118, 925–940.
Integrins regulate neuronal neurotrophin gene expression through effects on voltage-sensitive calcium channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVejsr8%3D&md5=9405d6df3ef4266b90b8edc05e2e2bc2CAS | 12732238PubMed |

Grenache, D. G., Zhang, Z., Wells, L. E., Santoro, S. A., Davidson, J. M., and Zutter, M. M. (2007). Wound healing in the α2β1 integrin-deficient mouse: altered keratinocyte biology and dysregulated matrix metalloproteinase expression. J. Invest. Dermatol. 127, 455–466.
Wound healing in the α2β1 integrin-deficient mouse: altered keratinocyte biology and dysregulated matrix metalloproteinase expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt12hsw%3D%3D&md5=ac79557e642d3179a0979a6531578857CAS | 17068473PubMed |

Huhtala, M., Heino, J., Casciari, D., de Luise, A., and Johnson, M. S. (2005). Integrin evolution: insights from ascidian and teleost fish genomes. Matrix Biol. 24, 83–95.
Integrin evolution: insights from ascidian and teleost fish genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVOjsLg%3D&md5=40098786e112f18ce1d0d6a4ba6bff24CAS | 15890260PubMed |

Huxley-Jones, J., Pinney, J. W., Archer, J., Robertson, D. L., and Boot-Handford, R. P. (2009). Back to basics: how the evolution of the extracellular matrix underpinned vertebrate evolution. Int. J. Exp. Pathol. 90, 95–100.
Back to basics: how the evolution of the extracellular matrix underpinned vertebrate evolution.Crossref | GoogleScholarGoogle Scholar | 19335547PubMed |

Hynes, R. O. (1996). Targeted mutations in cell adhesion genes: What have we learned from them? Dev. Biol. 180, 402–412.
Targeted mutations in cell adhesion genes: What have we learned from them?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVaq&md5=b1e954a35e20e983cfd3e2c704653f93CAS | 8954713PubMed |

Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687.
Integrins: bidirectional, allosteric signaling machines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKis70%3D&md5=2f54b90a313b79f198459c45d65284c6CAS | 12297042PubMed |

Ivkovic, S., Yoon, B. S., Popoff, S. N., Safadi, F. F., Libuda, D. E., Stephenson, R. C., Daluiski, A., and Lyons, K. M. (2003). Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130, 2779–2791.
Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFart7k%3D&md5=08777cefc70b202c8d55c7667f4613f1CAS | 12736220PubMed |

Johnson, M. S., Lu, N., Denessiouk, K., Heino, J., and Gullberg, D. (2009). Integrins during evolution: evolutionary trees and model organisms. Biochim. Biophys. Acta 1788, 779–789.
Integrins during evolution: evolutionary trees and model organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFahtbk%3D&md5=e9608e27d454971b47fd7035ab9b9170CAS | 19161977PubMed |

Krane, S. M., and Inada, M. (2008). Matrix metalloproteinases and bone. Bone 43, 7–18.
Matrix metalloproteinases and bone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1amtr8%3D&md5=eb4ae09ed4df81313076ccc30711d4b1CAS | 18486584PubMed |

Kuijpers, T. W., Hakkert, B. C., van Mourik, J. A., and Roos, D. (1990). Distinct adhesive properties of granulocytes and monocytes to endothelial cells under static and stirred conditions. J. Immunol. 145, 2588–2594.
| 1:CAS:528:DyaK3cXmt12msrc%3D&md5=e1694f0c5e5915f56ce45ad20870ec56CAS | 1976697PubMed |

Lathia, J. D., Chigurupati, S., Thundyil, J., Selvaraj, P. K., Mughal, M. R., Woodruff, T. M., Chan, S. L., Karamyan, V. T., Mattson, M. P., and Arumugam, T. V. (2010). Pivotal role for beta-1 integrin in neuro-vascular remodelling after ischemic stroke. Exp. Neurol. 221, 107–114.
Pivotal role for beta-1 integrin in neuro-vascular remodelling after ischemic stroke.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotV2q&md5=cd19b403483bcf3d04be41752cd950c1CAS | 19837065PubMed |

Leitinger, B., and Hohenester, E. (2007). Mammalian collagen receptors. Matrix Biol. 26, 146–155.
Mammalian collagen receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1SksLY%3D&md5=ae1cc43cbe5f260bf39c034863ebd2ccCAS | 17141492PubMed |

Liarte, S., Chaves-Pozo, E., García-Alcazar, A., Mulero, V., Meseguer, J., and García-Ayala, A. (2007). Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration. Reprod. Biol. Endocrinol. 5, 20–35.
Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration.Crossref | GoogleScholarGoogle Scholar | 17547755PubMed |

Malan, D., Wenzel, D., Schmidt, A., Geisen, C., Raible, A., Bölck, B., Fleischmann, B. K., and Bloch, W. (2010). Endothelial beta1 integrins regulate sprouting and network formation during vascular development. Development 137, 993–1002.
| 1:CAS:528:DC%2BC3cXlt1Kjsb4%3D&md5=3e9f0a5881d9bf45283e633045527d0dCAS | 20179098PubMed |

Meighan, C. M., and Schwarzbauer, J. E. (2008). Temporal and spatial regulation of integrins during development. Curr. Opin. Cell Biol. 20, 520–524.
Temporal and spatial regulation of integrins during development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyks73L&md5=456277a95dc1541f00c0b5b815aa72b0CAS | 18603422PubMed |

Mócsai, A., Abram, C. L., Jakus, Z., Hu, Y., Lanier, L. L., and Lowell, C. A. (2006). Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat. Immunol. 7, 1326–1333.
Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs.Crossref | GoogleScholarGoogle Scholar | 17086186PubMed |

Mortensen, A. S., and Arukwe, A. (2007). Effects of 17alpha-ethynylestradiol on hormonal responses and xenobiotic biotransformation system of Atlantic salmon (Salmo salar). Aquat. Toxicol. 85, 113–123.
Effects of 17alpha-ethynylestradiol on hormonal responses and xenobiotic biotransformation system of Atlantic salmon (Salmo salar).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFeiur3E&md5=803ff82775eb64f84206784074958279CAS | 17875331PubMed |

Mott, J. D., and Werb, Z. (2004). Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. 16, 558–564.
Regulation of matrix biology by matrix metalloproteinases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFGktLc%3D&md5=a2b9bd394bd31f206a1b2510a8b56abbCAS | 15363807PubMed |

Mould, A. P., McLeish, J. A., Huxley-Jones, J., Goonesinghe, A. C., Hurlstone, A. F., Boot-Handford, R. P., and Humphries, M. J. (2006). Identification of multiple integrin beta1 homologs in zebrafish (Danio rerio). BMC Cell Biol. 20, 7–24.

Mulero, I., Chaves-Pozo, E., García-Alcázar, A., Meseguer, J., Mulero, V., and García-Ayala, A. (2007). Distribution of the professional phagocytic granulocytes of the bony fish gilthead seabream Sparus aurata L. during the ontogeny of lymphomyeloid organs and pathogen entry sites. Dev. Comp. Immunol. 31, 1024–1033.
Distribution of the professional phagocytic granulocytes of the bony fish gilthead seabream Sparus aurata L. during the ontogeny of lymphomyeloid organs and pathogen entry sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1yhu7g%3D&md5=ad56b75e80542a3bd65b42d2d6b41442CAS | 17367856PubMed |

Mulero, I., Sepulcre, M. P., Fuentes, I., García-Alcázar, A., Meseguer, J., García-Ayala, A., and Mulero, V. (2008). Vaccination of larvae of the bony fish gilthead seabream reveals a lack of correlation between lymphocyte development and adaptive immunocompetence. Mol. Immunol. 45, 2981–2989.
Vaccination of larvae of the bony fish gilthead seabream reveals a lack of correlation between lymphocyte development and adaptive immunocompetence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFKkt74%3D&md5=7aae4e3c4bb724c0cb0363d79dd965adCAS | 18325592PubMed |

Page-McCaw, A., Ewald, A. J., and Werb, Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8, 221–233.
Matrix metalloproteinases and the regulation of tissue remodelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVGrs74%3D&md5=3da071c764ceb9c3f49faa5c30028193CAS | 17318226PubMed |

Pilcher, B. K., Wang, M., Qin, X. J., Parks, W. C., Senior, R. M., and Welgus, H. G. (1999). Role of matrix metalloproteinases and their inhibition in cutaneous wound healing and allergic contact hypersensitivity. Ann. N. Y. Acad. Sci. 878, 12–24.
Role of matrix metalloproteinases and their inhibition in cutaneous wound healing and allergic contact hypersensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslenu7o%3D&md5=0ed9ddc603a8bdb51046eab09b9b47f0CAS | 10415717PubMed |

Pinkstaff, J. K., Lynch, G., and Gall, C. M. (1998). Localization and seizure-regulation of integrin beta 1 mRNA in adult rat brain. Brain Res. Mol. Brain Res. 55, 265–276.
Localization and seizure-regulation of integrin beta 1 mRNA in adult rat brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFaksb4%3D&md5=291c455dc3e32a36ede9330d742ac90eCAS | 9582434PubMed |

Roca, F. J., Sepulcre, M. A., López-Castejón, G., Meseguer, J., and Mulero, V. (2006). The colony-stimulating factor-1 receptor is a specific marker of macrophages from the bony fish gilthead seabream. Mol. Immunol. 43, 1418–1423.
The colony-stimulating factor-1 receptor is a specific marker of macrophages from the bony fish gilthead seabream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslKjur0%3D&md5=6c028c7267ae5a3948115b64f25f5e29CAS | 16137767PubMed |

Ronzière, M. C., Aubert-Foucher, E., Gouttenoire, J., Bernaud, J., Herbage, D., and Mallein-Gerin, F. (2005). Integrin alpha1beta1 mediates collagen induction of MMP-13 expression in MC615 chondrocytes. Biochim. Biophys. Acta 1746, 55–64.
Integrin alpha1beta1 mediates collagen induction of MMP-13 expression in MC615 chondrocytes.Crossref | GoogleScholarGoogle Scholar | 16198011PubMed |

Rozario, T., and DeSimone, D. W. (2010). The extracellular matrix in development and morphogenesis: A dynamic view. Dev. Biol. 341, 126–140.
The extracellular matrix in development and morphogenesis: A dynamic view.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Squ7Y%3D&md5=d58067019c897c2c50280d49cea5a202CAS | 19854168PubMed |

Salata, I. M., Stojanovic, N., Cajdler-Łuba, A., Lewandowski, K. C., and Lewiński, A. (2008). Gelatinase A (MM-2), gelatinase B (MMP-9) and their inhibitors (TIMP 1, TIMP-2) in serum of women with endometriosis: significant correlation between MMP-2, MMP-9 and their inhibitors without difference in levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in relation to the severity of endometriosis. Gynecol. Endocrinol. 24, 326–330.
Gelatinase A (MM-2), gelatinase B (MMP-9) and their inhibitors (TIMP 1, TIMP-2) in serum of women with endometriosis: significant correlation between MMP-2, MMP-9 and their inhibitors without difference in levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in relation to the severity of endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslKrt7g%3D&md5=b42cd8680499184d460e76700ecee9c0CAS | 18584412PubMed |

Schultz, G. S., and Wysocki, A. (2009). Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 17, 153–162.
Interactions between extracellular matrix and growth factors in wound healing.Crossref | GoogleScholarGoogle Scholar | 19320882PubMed |

Sepulcre, M. P., Pelegrín, P., Mulero, V., and Meseguer, J. (2002). Characterisation of gilthead seabream acidophilic granulocytes by a monoclonal antibody unequivocally points to their involvement in fish phagocytic response. Cell Tissue Res. 308, 97–102.
Characterisation of gilthead seabream acidophilic granulocytes by a monoclonal antibody unequivocally points to their involvement in fish phagocytic response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlSnsrg%3D&md5=298eef6ba48675a6606538387b26b972CAS | 12012209PubMed |

Siu, M. K., Mruk, D. D., Lee, W. M., and Cheng, C. Y. (2003). Adhering junction dynamics in the testis are regulated by an interplay of beta 1-integrin and focal adhesion complex-associated proteins. Endocrinology 144, 2141–2163.
Adhering junction dynamics in the testis are regulated by an interplay of beta 1-integrin and focal adhesion complex-associated proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1Wit7s%3D&md5=674dd6bf992591afe147a424fe921e12CAS | 12697723PubMed |

Smith, V. A., Matthews, F. J., Majid, M. A., and Cook, S. D. (2006). Keratoconus: matrix metalloproteinase-2 activation and TIMP modulation. Biochim. Biophys. Acta 1762, 431–439.
| 1:CAS:528:DC%2BD28Xit1Cgs78%3D&md5=814baf1ae41833a2506b9264f946a443CAS | 16516444PubMed |

Stefanidakis, M., and Koivunen, E. (2006). Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood 108, 1441–1450.
Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1SltrY%3D&md5=231c96f8413ccc83a53fdadf7d8e2373CAS | 16609063PubMed |

Stevens, A. L., Wishnok, J. S., White, F. M., Grodzinsky, A. J., and Tannenbaum, S. R. (2009). Mechanical injury and cytokines cause loss of cartilage integrity and upregulate proteins associated with catabolism, immunity, inflammation, and repair. Mol. Cell. Proteomics 8, 1475–1489.
Mechanical injury and cytokines cause loss of cartilage integrity and upregulate proteins associated with catabolism, immunity, inflammation, and repair.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Gjtb4%3D&md5=3cd3ff918fb72276d766dd3fe71e1e4cCAS | 19196708PubMed |

Sueoka, K., Shiokawa, S., Miyazaki, T., Kuji, N., Tanaka, M., and Yoshimura, Y. (1997). Integrins and reproductive physiology: expression and modulation in fertilization, embryogenesis, and implantation. Fertil. Steril. 67, 799–811.
Integrins and reproductive physiology: expression and modulation in fertilization, embryogenesis, and implantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3nslCqtQ%3D%3D&md5=f701fb5e645ae7792d974b20c27bacdaCAS | 9130881PubMed |

Szisch, V., Papandroulakis, N., Fanouraki, E., and Pavlidis, M. (2005). Ontogeny of the thyroid hormones and cortisol in the gilthead sea bream, Sparus aurata. Gen. Comp. Endocrinol. 142, 186–192.
Ontogeny of the thyroid hormones and cortisol in the gilthead sea bream, Sparus aurata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1Crtrk%3D&md5=4c075af6e9ba9a976b3d4585a0d9b9dbCAS | 15862562PubMed |

Takaishi, H., Kimura, T., Dalal, S., Okada, Y., and D’Armiento, J. (2008). Joint diseases and matrix metalloproteinases: a role for MMP-13. Curr. Pharm. Biotechnol. 9, 47–54.
Joint diseases and matrix metalloproteinases: a role for MMP-13.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVGjt7k%3D&md5=ddd8ddfd24dd222cef4bff79251c12edCAS | 18289056PubMed |

Tiago, D. M., Laizé, V., and Cancela, M. L. (2008). Alternatively spliced transcripts of Sparus aurata insulin-like growth factor 1 are differentially expressed in adult tissues and during early development. Gen. Comp. Endocrinol. 157, 107–115.
Alternatively spliced transcripts of Sparus aurata insulin-like growth factor 1 are differentially expressed in adult tissues and during early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlWgsbs%3D&md5=5d08242f7afefd9676332cc41ea8c762CAS | 18555066PubMed |

Tran, K. T., Griffith, L., and Wells, A. (2004). Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair Regen. 12, 262–268.
Extracellular matrix signaling through growth factor receptors during wound healing.Crossref | GoogleScholarGoogle Scholar | 15225204PubMed |

Tsang, K. Y., Cheung, M. C. H., Chan, D., and Cheah, K. S. E. (2010). The developmental roles of the extracellular matrix: beyond structure to regulation. Cell Tissue Res. 339, 93–110.
The developmental roles of the extracellular matrix: beyond structure to regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVymtrbK&md5=3334be40377f47f69da682309b3086aaCAS | 19885678PubMed |

Vogel, W. F. (2001). Collagen-receptor signaling in health and disease. Eur. J. Dermatol. 11, 506–514.
| 1:CAS:528:DC%2BD3MXovV2rs7Y%3D&md5=b32c836156b8ddb23ac53de3b6cdc67dCAS | 11701397PubMed |

Wyatt, R. A., Keow, J. Y., Harris, N. D., Haché, C. A., Li, D. H., and Crawford, B. D. (2009). The zebrafish embryo: a powerful model system for investigating matrix remodeling. Zebrafish 6, 347–354.
The zebrafish embryo: a powerful model system for investigating matrix remodeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFCqtro%3D&md5=83bdb71eb18122fbe0766e07dbb5a4c5CAS | 19929220PubMed |

Zhang, J., Bai, S., Zhang, X., Nagase, H., and Sarras, M. P., (2003). The expression of gelatinase A (MMP-2) is required for normal development of zebrafish embryos. Dev. Genes Evol. 213, 456–463.
The expression of gelatinase A (MMP-2) is required for normal development of zebrafish embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFCit7s%3D&md5=0ac4784736f4c294badd69ff3acdc02aCAS | 12898250PubMed |

Zhang, Z. G., Bothe, I., Hirche, F., Zweers, M., Gullberg, D., Pfitzer, G., Krieg, T., Eckes, B., and Aumailley, M. (2006). Interactions of primary fibroblasts and keratinocytes with extracellular matrix proteins: contribution of α2β1 integrin. J. Cell Sci. 119, 1886–1895.
Interactions of primary fibroblasts and keratinocytes with extracellular matrix proteins: contribution of α2β1 integrin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVOms70%3D&md5=3e8f6a222d93659bd94f490550d1f429CAS | 16636073PubMed |

Zweers, M. C., Davidson, J. M., Pozzi, A., Hallinger, R., Janz, K., Quondamatteo, F., Leutgeb, B., Krieg, T., and Eckes, B. (2007). Integrin α2β1 is required for regulation of murine wound angiogenesis but is dispensable for reepithelialization. J. Invest. Dermatol. 127, 467–478.
Integrin α2β1 is required for regulation of murine wound angiogenesis but is dispensable for reepithelialization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt12jtQ%3D%3D&md5=714f9a87dde5f7fc89cedbc95dba0494CAS | 16977325PubMed |