Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of corticotropin-releasing hormone and its antagonist on the gene expression of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in the hypothalamus and anterior pituitary gland of follicular phase ewes

Magdalena Ciechanowska A B D , Magdalena Łapot A , Tadeusz Malewski C , Krystyna Mateusiak A , Tomasz Misztal A and Franciszek Przekop A
+ Author Affiliations
- Author Affiliations

A The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Warsaw, Poland.

B The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland.

C Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 3, 00-679 Warsaw, Poland.

D Corresponding author. Email: mciechanowska@wihe.waw.pl

Reproduction, Fertility and Development 23(6) 780-787 https://doi.org/10.1071/RD10341
Submitted: 17 December 2010  Accepted: 21 February 2011   Published: 7 July 2011

Abstract

There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo–pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo–anterior pituitary unit.

Additional keyword: LH.


References

Adams, B. M., Sukarai, H., and Adams, T. E. (1996). Concentration of gonadotropin-releasing hormone (GnRH) receptor messenger ribonucleic acid in pituitary tissue of orchidectomized sheep: effect of estradiol and GnRH. Biol. Reprod. 54, 407–412.
Concentration of gonadotropin-releasing hormone (GnRH) receptor messenger ribonucleic acid in pituitary tissue of orchidectomized sheep: effect of estradiol and GnRH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt1SisA%3D%3D&md5=7a1a01d95c0fbcf6c7728b11124372a4CAS | 8788193PubMed |

Breen, K. M., Davis, T. L., Doro, L. T., Nett, T. M., Oakley, A. E., Podmanabhan, V., Ripoli, L. A., Wagenmaker, E. R., and Karsch, F. J. (2008). Insight into the neuroendocrine site and cellular mechanism by which cortisol suppress pituitary responsiveness to gonadotropin-releasing hormone. Endocrinology 149, 767–773.
Insight into the neuroendocrine site and cellular mechanism by which cortisol suppress pituitary responsiveness to gonadotropin-releasing hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yqtLc%3D&md5=a5a2df910de40740bf0976bd0be03ff3CAS | 17962347PubMed |

Brooks, J., and Mc Neilly, A. S. (1994). Regulation of gonadotropin-releasing hormone receptor mRNA expression in the sheep. J. Endocrinol. 143, 175–182.
Regulation of gonadotropin-releasing hormone receptor mRNA expression in the sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslamtr4%3D&md5=73debc80a5dca9e34762933acde6d7b5CAS | 7964316PubMed |

Caraty, A., Miller, D. W., Delaleu, B., and Martin, B. (1997). Stimulation of LH secretion in sheep by central administration of corticotropin-releasing hormone. J. Reprod. Fertil. 111, 249–257.
Stimulation of LH secretion in sheep by central administration of corticotropin-releasing hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFersg%3D%3D&md5=bd688fa13302fd14e7ffef815058500aCAS | 9462293PubMed |

Cheng, K. W., Ngan, E. S. W., Kang, S. K., Chow, B. K. C., and Leung, P. C. K. (2000). Transcriptional down-regulation of human gonadotropin-releasing hormone (GnRH) receptor gene by GnRH role of protein kinase C and activating protein 1. Endocrinology 141, 3611–3622.
Transcriptional down-regulation of human gonadotropin-releasing hormone (GnRH) receptor gene by GnRH role of protein kinase C and activating protein 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvVGms7s%3D&md5=2089dadda0c9541f4033aad0d957e908CAS | 11014215PubMed |

Ciechanowska, M., Lapot, M., Malewski, T., Misztal, T., Mateusiak, K., and Przekop, F. (2007). Effect of stress on the expression of GnRH and GnRH receptor (GnRH-R) genes in the preoptic area-hypothalamus and GnRH-R gene in the stalk/median eminence and anterior pituitary gland in ewes during follicular phase of the estrous cycle. Acta Neurobiol. Exp. (Wars) 67, 1–12.
| 17474316PubMed |

Ciechanowska, M., Łapot, M., Malewski, T., Mateusiak, K., Misztal, T., and Przekop, F. (2008a). The central effect of β-endorphin and naloxone on the expression of GnRH gene and GnRH receptor (GnRH-R) gene in the hypothalamus, and on GnRH-R gene in the anterior pituitary gland in follicular phase ewes. Exp. Clin. Endocrinol. Diabetes 116, 40–46.
The central effect of β-endorphin and naloxone on the expression of GnRH gene and GnRH receptor (GnRH-R) gene in the hypothalamus, and on GnRH-R gene in the anterior pituitary gland in follicular phase ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslCjsLY%3D&md5=9e12796b2a005e20a96a4b29c308c5efCAS | 17973212PubMed |

Ciechanowska, M., Łapot, M., Malewski, T., Misztal, T., Mateusiak, K., and Przekop, F. (2008b). Implication of dopaminergic systems on GnRH and GnRHR genes expression in the hypothalamus and GnRH-R gene expression in the anterior pituitary gland of anestrous ewes. Exp. Clin. Endocrinol. Diabetes 116, 357–362.
Implication of dopaminergic systems on GnRH and GnRHR genes expression in the hypothalamus and GnRH-R gene expression in the anterior pituitary gland of anestrous ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOjs78%3D&md5=d6a331b37900075723aacc77a7ec0e65CAS | 18528813PubMed |

Ciechanowska, M., Łapot, M., Malewski, T., Misztal, T., Mateusiak, K., and Przekop, F. (2009). Effects of GABAA receptor modulation on the expression of GnRH gene and GnRH receptor (GnRH-R) gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland of follicular-phase ewes. Anim. Reprod. Sci. 111, 235–248.
Effects of GABAA receptor modulation on the expression of GnRH gene and GnRH receptor (GnRH-R) gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland of follicular-phase ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKmt78%3D&md5=6ead463757cd6cbdffaae96a88e1a1e9CAS | 18434046PubMed |

Clarke, I. J., Horton, R. J. E., and Doughton, B. (1990). Investigation of the mechanism by which insulin induced hypoglycaemia decreases luteinizing hormone secretion on ovariectomized ewes. Endocrinology 127, 1470–1476.
Investigation of the mechanism by which insulin induced hypoglycaemia decreases luteinizing hormone secretion on ovariectomized ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsVGltbw%3D&md5=7a9c494ce3f811f00c5dc9f7c76ff309CAS | 2201538PubMed |

De Paolo, L. V., King, R. A., and Carrollo, A. J. (1987). In vivo and in vitro examination of an autoregulatory mechanism for luteinizing hormone-releasing hormone. Endocrinology 120, 273–279.

Dobson, H., Ghuman, S., Prabhakar, S., and Smith, R. (2003). A conceptual model of the influence of stress on female reproduction. Reproduction 125, 151–163.
A conceptual model of the influence of stress on female reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVKltrg%3D&md5=eb728e3c430a77fdcbea7db13f3ce0f3CAS | 12578529PubMed |

Donald, R. A., Redekopp, C., Cameron, V., Nicholls, M. G., Bolton, J., Liversey, J., Espiner, E. A., Rivier, J., and Vale, W. (1983). The hormonal actions of corticotropin-releasing factor in sheep: effects of intravenous and intracerebroventricular injection. Endocrinology 113, 866–870.
The hormonal actions of corticotropin-releasing factor in sheep: effects of intravenous and intracerebroventricular injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltFKmsL4%3D&md5=61e7d98e85d644d837a1dd0554cc807aCAS | 6307669PubMed |

Dunn, A. J., and Berridge, C. W. (1990). Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety of stress responses? Brain Rev. 15, 71–100.
Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety of stress responses?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVKis7s%3D&md5=238b4e838dac54709ed0a0efe9d187a5CAS |

Emoto, H., Yokoo, H., Yoshida, M., and Tanaka, M. (1993). Corticotropin-releasing factor enhances noradrenaline release in the rat hypothalamus assessed by intracerebral microdialysis. Brain Res. 601, 286–288.
Corticotropin-releasing factor enhances noradrenaline release in the rat hypothalamus assessed by intracerebral microdialysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvVerur4%3D&md5=47e8b70bacfcc965dd7b5663225c441aCAS | 8431775PubMed |

Fueshko, S. M., Key, S., and Wray, S. (1998). Luteinizing hormone-releasing hormone (LHRH) neurons maintained in nasal explants decrease LHRH messenger ribonucleic acid levels after activation of GABAA receptors. Endocrinology 139, 2734–2740.
Luteinizing hormone-releasing hormone (LHRH) neurons maintained in nasal explants decrease LHRH messenger ribonucleic acid levels after activation of GABAA receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFSltbc%3D&md5=17a5e17ebbc10b4324ae7372b7fb4126CAS | 9607779PubMed |

Gajewska, A., Kochman, K., Leranth, Y., Kochman, H., and Cunis, R. (2000). Modulation of luteinizing hormone subunit gene expression by intracerebroventricular microinjection of gonadotropin-releasing hormone or β-endorphin in female rats. Biochim. Biophys. Acta 1523, 217–224.
| 1:CAS:528:DC%2BD3cXosVyqu7k%3D&md5=6b6be1434f1f60bee11a73075914f144CAS | 11042387PubMed |

Gambacciani, M., Yen, S. S. C., and Rasmussen, D. D. (1986). GnRH release from the mediobasal hypothalamus: in vitro inhibition by corticotropin-releasing factor. Neuroendocrinology 43, 533–536.
GnRH release from the mediobasal hypothalamus: in vitro inhibition by corticotropin-releasing factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsVKmtbw%3D&md5=0fe8b8729624a69872a0df998d3552e7CAS | 3018610PubMed |

Gore, A. C., and Roberts, J. L. (1997). Regulation of gonadotropin-releasing hormone gene expression in vivo and in vitro. Front. Neuroendocrinol. 18, 209–245.
Regulation of gonadotropin-releasing hormone gene expression in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFensbg%3D&md5=77011ee1f63d5c490640834942c9658eCAS | 9101260PubMed |

Harris, T. G., Robinson, J. E., Evans, N. P., Skinner, D. C., and Herbison, A. E. (1998). Gonadotropin-releasing hormone messenger ribonucleic acid expression changes prior to onset of the LH surge in the ewe. Endocrinology 139, 57–64.
Gonadotropin-releasing hormone messenger ribonucleic acid expression changes prior to onset of the LH surge in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFKmsQ%3D%3D&md5=c80bdcc88cea2eb0ac1c6f37c62be2caCAS | 9421398PubMed |

Herbison, A. E. (1998). Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocr. Rev. 19, 302–330.
Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVWhs7c%3D&md5=ebe68d2d588c62c398f4a1be4dc5d1d3CAS | 9626556PubMed |

Jennes, L., McShane, T., Brame, B., and Centers, A. (1996). Dynamic changes in gonadotropin releasing hormone receptor mRNA content in the mediobasal hypothalamus during the rat estrous cycle. J. Neuroendocrinol. 8, 275–281.
Dynamic changes in gonadotropin releasing hormone receptor mRNA content in the mediobasal hypothalamus during the rat estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFemtrY%3D&md5=b711f3f5e32bb0840966fdaa3cf5f4aaCAS | 8861283PubMed |

Kaiser, U. B., Jakubowiak, A., Steinberger, A., and Chin, W. W. (1997). Differential effect of gonadotropin-releasing hormone (GnRH) pulse frequency on gonadotropin subunit and GnRH receptor messenger ribonucleic acid levels in vitro. Endocrinology 138, 1224–1231.
Differential effect of gonadotropin-releasing hormone (GnRH) pulse frequency on gonadotropin subunit and GnRH receptor messenger ribonucleic acid levels in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1ymsrY%3D&md5=23e352f40de1590ebd9c977c7315a817CAS | 9048630PubMed |

Kang, S. M., Seong, J. Y., Cho, S., Cho, H., and Kim, K. (1995). Acute increases of GABAergic neurotransmission exerts a stimulatory effect on GnRH gene expression in the preoptic/anterior hypothalamus area of ovariectomized, estrogen and progesterone treated adult female rats. Neuroendocrinology 61, 486–492.
Acute increases of GABAergic neurotransmission exerts a stimulatory effect on GnRH gene expression in the preoptic/anterior hypothalamus area of ovariectomized, estrogen and progesterone treated adult female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlslartb8%3D&md5=5e8ace0e0fa59daeb9a7a7cc82cdf1feCAS | 7617125PubMed |

Kim, K., Lim, I. S., Cho, B. N., Kang, S. S., Lee, B. J., Choi, K. H., Chung, C. H., Lee, C. C., Cho, W. K., and Wuttke, W. (1993). A partial blockade of catecholaminergic neurotransmission with 6-hydroxydopamine decreases mRNA level of gonadotropin releasing hormone in the male rat hypothalamus. Neuroendocrinology 58, 146–152.
A partial blockade of catecholaminergic neurotransmission with 6-hydroxydopamine decreases mRNA level of gonadotropin releasing hormone in the male rat hypothalamus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXovVI%3D&md5=c0fa1771f8a3e621926b414a5e07779aCAS | 8264849PubMed |

Kim, K., Lee, B. J., Cho, B. N., Kang, S. S., Choi, W. S., Park, S. D., Lee, C. C., Cho, W. K., and Wuttke, W. (1994). Blockade of noradrenergic neurotransmition with diethyldithiocarbonic acid decreases the mRNA level of gonadotropin-releasing hormone in the hypothalamus of ovariectomized, steroid treated prepubertal rats. Neuroendocrinology 59, 539–544.
Blockade of noradrenergic neurotransmition with diethyldithiocarbonic acid decreases the mRNA level of gonadotropin-releasing hormone in the hypothalamus of ovariectomized, steroid treated prepubertal rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkt1OgtLc%3D&md5=12dcfee093fca14c5d9b936f2bfdeabeCAS | 8084377PubMed |

Kirkpatrick, B. L., Esquivel, E., Moss, G. E., Hamernik, D. L., and Wise, M. E. (1998). Estradiol and gonadotropin-releasing hormone (GnRH) interact to increase GnRH receptor expression in ovariectomized ewes after hypothalamic-pituitary disconnection. Endocrine 8, 225–229.
Estradiol and gonadotropin-releasing hormone (GnRH) interact to increase GnRH receptor expression in ovariectomized ewes after hypothalamic-pituitary disconnection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGnurw%3D&md5=fd7440c2e5a22faf52e39427042a647eCAS | 9741826PubMed |

Łapot, M., Ciechanowska, M., Malewski, T., Mateusiak, K., Misztal, T., and Przekop, F. (2008). Changes in the GnRH mRNA and GnRH receptor (GnRH-R) mRNA levels in the hypothalamic–anterior pituitary unit of anestrous ewes after infusion of GnRH into the third cerebral ventricle. Reprod. Biol. 8, 149–161.
| 18677402PubMed |

Leonhardt, S., Seong, J. Y., Kim, K., Thorun, J., and Wuttke, W. (1995). Activation of central GABAA but not GABAB receptors rapidly reduces pituitary LH release and GnRH gene expression in the preoptic/anterior hypothalamic area of ovariectomized rats. Neuroendocrinology 61, 655–662.
Activation of central GABAA but not GABAB receptors rapidly reduces pituitary LH release and GnRH gene expression in the preoptic/anterior hypothalamic area of ovariectomized rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXms1WqsL0%3D&md5=cf2d90fb20d83ac49ea67b9259dac319CAS | 7544879PubMed |

Li, S., and Pelletier, G. (1993). Chronic administration of muscimol and pentobarbital decreases gonadotropin-releasing hormone mRNA levels in the male rat hypothalamus determined by quantitative in situ hybridization. Neuroendocrinology 58, 136–139.
Chronic administration of muscimol and pentobarbital decreases gonadotropin-releasing hormone mRNA levels in the male rat hypothalamus determined by quantitative in situ hybridization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1eiu70%3D&md5=41337ea8638b78c51f1c333437694598CAS | 8264847PubMed |

Livak, K. J., and Smittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=e0ea026c02920b4196beca401ea8984bCAS | 11846609PubMed |

MacLusky, N. J., Naftolin, F., and Leranth, C. (1988). Immunocytochemical evidence for direct synaptic connections between corticotropin-releasing factor (CRF) and gonadotropin-releasing hormone (GnRH)-containing neurons in the preoptic area of the rat. Brain Res. 439, 391–395.
Immunocytochemical evidence for direct synaptic connections between corticotropin-releasing factor (CRF) and gonadotropin-releasing hormone (GnRH)-containing neurons in the preoptic area of the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXht1Crt7k%3D&md5=f1193edabd9f7d866d0f8b0114aea3fcCAS | 3282601PubMed |

Maeda, K. I., Cagampang, F. R. A., Coen, C. W., and Tsukamura, H. (1994). Involvement of the catecholaminergic input to the paraventricular nucleus and corticotropin-releasing hormone in the fasting-induced suppression of luteinizing hormone in female rats. Endocrinology 134, 1718–1722.
Involvement of the catecholaminergic input to the paraventricular nucleus and corticotropin-releasing hormone in the fasting-induced suppression of luteinizing hormone in female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis1Wktrs%3D&md5=39336893dd3522baf16b124e09e4ec40CAS | 8137735PubMed |

Marriam, G. R., and Wachter, W. (1982). Algorithm for the study of episodic hormone secretion. Am. J. Physiol. 243, E310–E318.
| 6889816PubMed |

Mitchell, J. C., Li, X. F., Breen, L., Thalabard, J. C., and O’Byrne, K. T. (2005). The role of the locus coeruleus in corticotropin-releasing hormone and stress-induced suppression of pulsatile luteinizing hormone secretion in the female rat. Endocrinology 146, 323–331.
The role of the locus coeruleus in corticotropin-releasing hormone and stress-induced suppression of pulsatile luteinizing hormone secretion in the female rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFGmt7fP&md5=0c927c6a2f15860e38e0fe92ee742980CAS | 15486230PubMed |

Naylor, A. M., Porter, D. W. F., and Lincoln, D. W. (1990). Central administration of corticotrophin-releasing factor in the sheep: effects on secretion of gonadotropins, prolactin and cortisol. J. Endocrinol. 124, 117–125.
Central administration of corticotrophin-releasing factor in the sheep: effects on secretion of gonadotropins, prolactin and cortisol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFSmtw%3D%3D&md5=f0cb3a3753eed50327bd177e9fc81e77CAS | 2299271PubMed |

Nikolarakis, K. E., Almeida, O. F. X., and Herz, A. (1986). Corticotropin releasing factor (CRF) inhibits gonadotropin-releasing hormone (GnRH) release from superfused rat hypothalami in vitro. Brain Res. 377, 388–390.
Corticotropin releasing factor (CRF) inhibits gonadotropin-releasing hormone (GnRH) release from superfused rat hypothalami in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkslejsb4%3D&md5=5eda0465c0e7fe65fc1c40a9cdd11fb0CAS | 3524753PubMed |

Oakley, A. E., Breen, K. M., Clarke, I. J., Karsch, F. J., Wagenmaker, E. R., and Tilbrook, A. J. (2009). Cortisol reduces gonadotropin-releasing hormone pulse frequency in follicular phase ewes: influence off ovarian steroids. Endocrinology 150, 341–349.
Cortisol reduces gonadotropin-releasing hormone pulse frequency in follicular phase ewes: influence off ovarian steroids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1aqsQ%3D%3D&md5=71f9eb74d93683e32c6baa79b3959d52CAS | 18801903PubMed |

Parrott, R. F., Robinson, J. E., and Thornton, S. N. (1988). No change in LH pulse frequency or plasma oxytocin in castrated rams treated with corticotropin-releasing hormone (CRF). J. Endocrinol. 119 , 130..

Polkowska, J., and Przekop, F. (1997). The effect of corticotropin-releasing factor (CRF) on the gonadotropin hormone releasing hormone (GnRH) hypothalamic neuronal system during preovulatory period in the ewe. Acta Neurobiol. Exp. 57, 91–99.
| 1:STN:280:DyaK1c%2FntFKltQ%3D%3D&md5=d0e4cb9978d0ddab841954d8246a189eCAS |

Price, M. L., Curtis, A. L., Kirby, L. G., Valentino, R. J., and Lucki, I. (1998). Effect of corticotropin-releasing factor on brain serotoninergic activity. Neuropsychopharmacology 18, 492–502.
Effect of corticotropin-releasing factor on brain serotoninergic activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVaiu78%3D&md5=32e6c93b56188e95f533fc1c538ccdf0CAS | 9571657PubMed |

Rivest, S., and Rivier, C. (1995). The role of corticotropin-releasing factor and interleukin-1 in the regulations of neurons controlling reproductive functions. Endocr. Rev. 16, 177–199.
| 1:CAS:528:DyaK2MXmtFWisrs%3D&md5=0f81abde8687a2957141414601ea3698CAS | 7781593PubMed |

Rivier, C., and Rivest, S. (1991). Effect of stress on the activity of hypothalamic–pituitary–gonadal axis: peripheral and central mechanisms. Biol. Reprod. 45, 523–532.
Effect of stress on the activity of hypothalamic–pituitary–gonadal axis: peripheral and central mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvFyksr8%3D&md5=fe3ba02e5e7dbb503907075af4f922fcCAS | 1661182PubMed |

Rivier, C., Rivier, J., and Vale, W. (1986). Stress-induced inhibition of reproductive functions: role of endogenous corticotropin-releasing factor. Science 231, 607–609.
Stress-induced inhibition of reproductive functions: role of endogenous corticotropin-releasing factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVars70%3D&md5=aec2639c62457e792460cf6618198a53CAS | 3003907PubMed |

Robinson, J. E., Healey, A. E., Harris, T. G., Messent, E. A., Skinner, D. C., Taylor, J. A., and Evans, N. P. (2000). The negative feedback action of progesterone on luteinizing hormone release is not associated with changes in GnRHmRNA expression in the ewe. J. Neuroendocrinol. 12, 121–129.
The negative feedback action of progesterone on luteinizing hormone release is not associated with changes in GnRHmRNA expression in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1ais7o%3D&md5=7644b0e6fa54eff860eb22c580ba8d33CAS | 10718907PubMed |

Roth, C., Jung, K., Kim, K., Arias, P., Moguilevsky, J., Jarry, H., Leonhardt, S., and Wuttke, W. (1997). Involvement of gamma amino butyric acid (GABA) in the postnatal function of the GnRH pulse generator as gene expression in the hypothalamus and pituitary. Exp. Clin. Endocrinol. Diabetes 105, 353–358.
Involvement of gamma amino butyric acid (GABA) in the postnatal function of the GnRH pulse generator as gene expression in the hypothalamus and pituitary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVygsbw%3D&md5=5cc93a4e0f03a167ee2d4d023289a93dCAS | 9439932PubMed |

Sarkar, D. K. (1987). In vivo secretion of LHRH in ovariectomized rats is regulated by a possible autofeedback mechanism. Neuroendocrinology 45, 510–513.
In vivo secretion of LHRH in ovariectomized rats is regulated by a possible autofeedback mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVyjtr8%3D&md5=3b3ab6db27c51b0189b06cf749df9e16CAS | 3302744PubMed |

Seong, J. Y., Jarry, H., Kühnemuth, S., Leonhardt, S., Wuttke, W., and Kim, K. (1995). Effect of GABA-ergic compounds on gonadotropin-releasing hormone receptor gene expression in the rat. Endocrinology 136, 2587–2593.
Effect of GABA-ergic compounds on gonadotropin-releasing hormone receptor gene expression in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlslGgtLc%3D&md5=b717de76d2beea1a1dafb8adb314495eCAS | 7750481PubMed |

Seong, J. Y., Kang, S. S., Kam, K., Han, Y.-G., Kwon, H. B., Ryu, K., and Kim, K. (1998). Different regulation of gonadotropin-releasing hormone (GnRH) receptor expression in the posterior mediobasal hypothalamus by steroid hormones implication of GnRH neuronal activity. Brain Res. Mol. Brain Res. 53, 226–235.
Different regulation of gonadotropin-releasing hormone (GnRH) receptor expression in the posterior mediobasal hypothalamus by steroid hormones implication of GnRH neuronal activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFegsQ%3D%3D&md5=810015b98e35ad210678baf44c5f2958CAS | 9473680PubMed |

Shoemaker, J. K., Garland, C. W., and Steinfeld, J. I. (Eds) (1974). Experiments in physical chemistry. In ‘Chemistry, Physical and Theoretical; Laboratory Manuals, 3rd edn’. pp. 34–39. (McGraw-Hill: New York.)

Stupnicki, R., and Madej, A. (1976). Radioimmunoassay of LH in the blood plasma of farm animals. Endokrinologie 68, 6–13.
| 1:CAS:528:DyaE2sXislClug%3D%3D&md5=c0a396eaa417706001b25847deba733aCAS | 1001269PubMed |

Tellam, D. J., Perone, M. J., Dunn, I. C., Radovick, S., Brennand, J., Rivier, J. E., Castro, M. G., and Lovejoy, D. A. (1998). Direct regulation of GnRH transcription by CRF-like peptides in an immortalized neuronal cell line. Neuroreport 9, 3135–3140.
Direct regulation of GnRH transcription by CRF-like peptides in an immortalized neuronal cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFCis7Y%3D&md5=7017849c79949b6b441157c7f5339ee8CAS | 9831440PubMed |

Tellam, D. J., Mohammad, Y. N., and Lovejoy, D. A. (2000). Molecular integration of hypothalamo-pituitary-adrenal axis-related neurohormones on the GnRH neuron. Biochem. Cell Biol. 78, 205–216.
Molecular integration of hypothalamo-pituitary-adrenal axis-related neurohormones on the GnRH neuron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlKntL4%3D&md5=35f30981ee8e8ad9e3f2d79efbc81688CAS | 10949075PubMed |

Thanky, N. R., Slater, R., and Herbison, A. E. (2003). Sex differences in estrogen-dependent transcription of gonadotropin releasing hormone (GnRH) gene revealed in GnRH transgenic mice. Endocrinology 144, 3351–3358.
Sex differences in estrogen-dependent transcription of gonadotropin releasing hormone (GnRH) gene revealed in GnRH transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGjsLc%3D&md5=10989e1ffad2e883a4b0976c42585db0CAS | 12865313PubMed |

Tilbrook, A. J., Canng, B. J., Stewart, B. J., Serapiglia, M. D., and Clowke, I. J. (1999). Central administration of corticotrophin releasing hormone but not arginine vasopressin stimulates the secretion of luteinizing hormone in rams in the presence and absence of testosterone. J. Endocrinol. 162, 301–311.
Central administration of corticotrophin releasing hormone but not arginine vasopressin stimulates the secretion of luteinizing hormone in rams in the presence and absence of testosterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1OltrY%3D&md5=5de86c651706cde9d8a8dc410bd01befCAS | 10425469PubMed |

Tomaszewska, D., Mateusiak, K., and Przekop, F. (1997). Extracellular monoamines and their metabolites in the mediobasal hypothalamus–median eminence of anestrous ewes during CRF treatment. Exp. Clin. Endocrinol. Diabetes 105, 175–181.
Extracellular monoamines and their metabolites in the mediobasal hypothalamus–median eminence of anestrous ewes during CRF treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVSjs7c%3D&md5=83e7513f27ab782b79d5a8eb1ff7f5c2CAS | 9228515PubMed |

Traczyk, W., and Przekop, F. (1963). Methods of investigation of the function of hypothalamus and hypophysis in chronic experiments in sheep. Acta Physiol. Pol. 14, 217–226.

Turzillo, A. M., Juengel, J. L., and Nett, T. M. (1995). Pulsatile gonadotropin-releasing hormone (GnRH) increases concentrations of GnRH receptor messenger ribonucleic acid and numbers of GnRH receptors during luteolysis in the ewe. Biol. Reprod. 53, 418–423.
Pulsatile gonadotropin-releasing hormone (GnRH) increases concentrations of GnRH receptor messenger ribonucleic acid and numbers of GnRH receptors during luteolysis in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntVSmu7s%3D&md5=55d95649135c51b5eb173ff3f0d20701CAS | 7492695PubMed |

Turzillo, A. M., Nolan, T. E., and Nett, T. M. (1998). Regulation of gonadotropin-releasing hormone (GnRH) receptor gene expression in sheep: interaction of GnRH and estradiol. Endocrinology 139, 4890–4894.
Regulation of gonadotropin-releasing hormone (GnRH) receptor gene expression in sheep: interaction of GnRH and estradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1ehtro%3D&md5=93eab3e235d093e2547d36cc59c84525CAS | 9832425PubMed |

Viguie, C., Caraty, A., Locatelli, A., and Malpoux, B. (1995). Regulation of luteinizing hormone-releasing hormone (LHRH) secretion by melatonin in the ewe. Simultaneous delayed increase in LHRH and luteinizing hormone pulsatile secretion. Biol. Reprod. 52, 1114–1120.
Regulation of luteinizing hormone-releasing hormone (LHRH) secretion by melatonin in the ewe. Simultaneous delayed increase in LHRH and luteinizing hormone pulsatile secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVCjs78%3D&md5=427a96ef3f00c24a3bb2f473b0a8365bCAS | 7626711PubMed |

Vizcarra, J. A., Wettemann, R. P., Braden, T. D., Turzillo, A. M., and Nett, T. M. (1997). Effect of gonadotropin-releasing hormone (GnRH) pulse frequency on serum and pituitary concentrations of luteinizing hormone and follicle stimulating hormone, GnRH receptors, and messenger ribonucleic acid for gonadotropin subunits in cows. Endocrinology 138, 594–601.
Effect of gonadotropin-releasing hormone (GnRH) pulse frequency on serum and pituitary concentrations of luteinizing hormone and follicle stimulating hormone, GnRH receptors, and messenger ribonucleic acid for gonadotropin subunits in cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7ls1Kjsw%3D%3D&md5=e66c958c8f1fe223ffae949892dc97edCAS | 9002991PubMed |

Wagenmaker, E. R., Breen, K. M., Oacley, A. E., Tilbrook, A. J., and Karsch, F. J. (2009). Psychological stress inhibits amplitude of gonadotropin-releasing hormone pulses independent of cortisol action on the Type II glucocorticoid receptor. Endocrinology 150, 762–769.
Psychological stress inhibits amplitude of gonadotropin-releasing hormone pulses independent of cortisol action on the Type II glucocorticoid receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SgsLs%3D&md5=7d3a57b352ede8e90c70119826d3458cCAS | 18832098PubMed |

Welento, J., Szteyn, S., and Milart, Z. (1969). Observations on the stereotaxic configuration of the hypothalamus nuclei in the sheep. Anat. Anz. 124, 1–27.
| 1:STN:280:DyaF1M3gs1Oisw%3D%3D&md5=6f5004344c95456d43e08f2ad852c844CAS | 4891518PubMed |