Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Epidermal growth factor upregulates endometrial CYR61 expression via activation of the JAK2/STAT3 pathway

Rebecca Klein A B , Simone Stiller A and Isabella Gashaw A C D
+ Author Affiliations
- Author Affiliations

A University of Duisburg-Essen, Institute of Anatomy II, Hufelandstraße 55, 45122 Essen, Germany.

B Present address: University of Duisburg-Essen, Institute of Molecular Biology, Hufelandstraße 55, 45122 Essen, Germany.

C Present address: Bayer HealthCare, Global Drug Discovery, Muellerstr. 178, 13342 Berlin, Germany.

D Corresponding author. Email: isabella.gashaw@bayer.com

Reproduction, Fertility and Development 24(3) 482-489 https://doi.org/10.1071/RD10335

Abstract

Endometrial cysteine-rich protein 61 (CYR61, CCN1) is a growth factor-inducible gene whose expression is elevated during the proliferative phase of the menstrual cycle and which has been implicated in the pathogenesis of endometriosis. This study aimed to define the mediators of epidermal growth factor (EGF) signalling on CYR61 expression in spontaneously immortalised human endometrial epithelial cells (HES) as a model system. After 30 min of EGF treatment, the receptor was phosphorylated and internalised as well as mRNA CYR61 increased in HES cells. However, neither inhibition of C-terminal EGF receptor (EGFR)-phosphorylation nor blockage of the mitogen-activated proteinkinase/extracellular signal-regulated kinase (MAPK/ERK) pathway was able to reduce CYR61 levels. Surprisingly, the HES cells showed upregulation of CYR61 mRNA expression after inhibition of the MAPK/ERK pathway when treated with EGF. Specific inhibitor studies identified the contribution of Janus kinase 2 (JAK2) and the signal transducer and activator of transcription protein STAT3 to the regulation of CYR61 expression. The JAK2/STAT3 interaction contributed to the basal expression of CYR61 and mediated EGF-driven regulation of CYR61 after 30 and 120 min of treatment. In summary, EGF-mediated CYR61 upregulation in HES cells involves STAT3 and is counter-regulated by the EGFR/MAPK/ERK pathway.

Additional keywords: endometrium, signal transducers and activators of transcription proteins.


References

Absenger, Y., Hess-Stumpp, H., Kreft, B., Kratzschmar, J., Haendler, B., Schutze, N., Regidor, P. A., and Winterhager, E. (2004). Cyr61, a deregulated gene in endometriosis. Mol. Hum. Reprod. 10, 399–407.
Cyr61, a deregulated gene in endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVSju7k%3D&md5=c6a29a83a4bbd0968e219b9096679044CAS | 15044605PubMed |

Bergman, C. A., Talavera, F., Christman, G. M., Baker, V. V., Roberts, J. A., and Menon, K. M. (1997). Transforming growth factor-β negatively modulates proliferation and c-fos expression of the human endometrial adenocarcinoma cell line HEC-1-A. Gynecol. Oncol. 65, 63–68.
Transforming growth factor-β negatively modulates proliferation and c-fos expression of the human endometrial adenocarcinoma cell line HEC-1-A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFKjsrs%3D&md5=2f657417e0f4a483c40fcc24db80cbe5CAS | 9103392PubMed |

Brigstock, D. R. (2002). Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5, 153–165.
Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVagtrg%3D&md5=febe6fb1a4f9dd87c74334d9263195cfCAS | 12831056PubMed |

Catalano, R. D., Johnson, M. H., Campbell, E. A., Charnock-Jones, D. S., Smith, S. K., and Sharkey, A. M. (2005). Inhibition of Stat3 activation in the endometrium prevents implantation: a nonsteroidal approach to contraception. Proc. Natl. Acad. Sci. USA 102, 8585–8590.
Inhibition of Stat3 activation in the endometrium prevents implantation: a nonsteroidal approach to contraception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFCgtrk%3D&md5=9649186f81119ce1c3c50aba5c47ae84CAS | 15937114PubMed |

Chen, Y., and Du, X. Y. (2007). Functional properties and intracellular signaling of CCN1/Cyr61. J. Cell. Biochem. 100, 1337–1345.
Functional properties and intracellular signaling of CCN1/Cyr61.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVSlsbg%3D&md5=6e3816714a4fee4b14bf3396dcd17cfcCAS | 17171641PubMed |

Chen, Y., Ni, H., Ma, X. H., Hu, S. J., Luan, L. M., Ren, G., Zhao, Y. C., Li, S. J., Diao, H. L., Xu, X., Zhao, Z. A., and Yang, Z. M. (2006). Global analysis of differential luminal epithelial gene expression at mouse implantation sites. J. Mol. Endocrinol. 37, 147–161.
Global analysis of differential luminal epithelial gene expression at mouse implantation sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjtro%3D&md5=0777e12c9d6dfc7de74bcd0a4bc3462eCAS | 16901931PubMed |

Chiang, C. T., Weng, M. S., Lin-Shiau, S. Y., Kuo, K. L., Tsai, Y. J., and Lin, J. K. (2005). Pu-erh tea supplementation suppresses fatty acid synthase expression in the rat liver through downregulating Akt and JNK signalings as demonstrated in human hepatoma HepG2 cells. Oncol. Res. 16, 119–128.
| 16925113PubMed |

Colomiere, M., Findlay, J., Ackland, L., and Ahmed, N. (2009). Epidermal growth factor-induced ovarian carcinoma cell migration is associated with JAK2/STAT3 signals and changes in the abundance and localization of α6β1 integrin. Int. J. Biochem. Cell Biol. 41, 1034–1045.
Epidermal growth factor-induced ovarian carcinoma cell migration is associated with JAK2/STAT3 signals and changes in the abundance and localization of α6β1 integrin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVGjsLc%3D&md5=df28dc2bb8981916244d68f806b38074CAS | 18930836PubMed |

Davies, S. P., Reddy, H., Caivano, M., and Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105.
Specificity and mechanism of action of some commonly used protein kinase inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslWltrY%3D&md5=7b6ebc7dde6ad415b6dca9be5b6c572fCAS | 10998351PubMed |

Desai, N. N., Kennard, E. A., Kniss, D. A., and Friedman, C. I. (1994). Novel human endometrial cell line promotes blastocyst development. Fertil. Steril. 61, 760–766.
| 1:STN:280:DyaK2c3gtVChtQ%3D%3D&md5=a10b19e32332b31bbdf0f59f2ea0fa9bCAS | 7512055PubMed |

Ejskjaer, K., Sorensen, B. S., Poulsen, S. S., Mogensen, O., Forman, A., and Nexo, E. (2005). Expression of the epidermal growth factor system in human endometrium during the menstrual cycle. Mol. Hum. Reprod. 11, 543–551.
Expression of the epidermal growth factor system in human endometrium during the menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVelsbrK&md5=793e2b1bac72482d52c8ec8db7376eadCAS | 16100239PubMed |

Ellis, A. G., Doherty, M. M., Walker, F., Weinstock, J., Nerrie, M., Vitali, A., Murphy, R., Johns, T. G., Scott, A. M., Levitzki, A., McLachlan, G., Webster, L. K., Burgess, A. W., and Nice, E. C. (2006). Preclinical analysis of the analinoquinazoline AG1478, a specific small molecule inhibitor of EGF receptor tyrosine kinase. Biochem. Pharmacol. 71, 1422–1434.
Preclinical analysis of the analinoquinazoline AG1478, a specific small molecule inhibitor of EGF receptor tyrosine kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Gls78%3D&md5=fb3b20600c255cc8ad463c53fd76c313CAS | 16522318PubMed |

Fitzgerald, J. S., Poehlmann, T. G., Schleussner, E., and Markert, U. R. (2008). Trophoblast invasion: the role of intracellular cytokine signalling via signal transducer and activator of transcription 3 (STAT3). Hum. Reprod. Update 14, 335–344.
Trophoblast invasion: the role of intracellular cytokine signalling via signal transducer and activator of transcription 3 (STAT3).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1SksL0%3D&md5=84d691ea64f893afcd8d5b497fdb7381CAS | 18424427PubMed |

Frede, S., Freitag, P., Otto, T., Heilmaier, C., and Fandrey, J. (2005). The proinflammatory cytokine interleukin 1β and hypoxia cooperatively induce the expression of adrenomedullin in ovarian carcinoma cells through hypoxia inducible factor 1 activation. Cancer Res. 65, 4690–4697.
The proinflammatory cytokine interleukin 1β and hypoxia cooperatively induce the expression of adrenomedullin in ovarian carcinoma cells through hypoxia inducible factor 1 activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Ohtb0%3D&md5=3b57072259a8ff64b90203f4369f5a80CAS | 15930287PubMed |

Gashaw, I., Hastings, J. M., Jackson, K., Winterhager, E., and Fazleabas, A. T. (2006). Induced endometriosis in the baboon (Papio anubis) increases the expression of the proangiogenic factor CYR61 (CCN1) in eutopic and ectopic endometria. Biol. Reprod. 74, 1060–1066.
Induced endometriosis in the baboon (Papio anubis) increases the expression of the proangiogenic factor CYR61 (CCN1) in eutopic and ectopic endometria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVyrtrw%3D&md5=67af7cae3e6a80b5588f48e85600351eCAS | 16481591PubMed |

Gashaw, I., Stiller, S., Boing, C., Kimmig, R., and Winterhager, E. (2008). Premenstrual regulation of the pro-angiogenic factor CYR61 in human endometrium. Endocrinology 149, 2261–2269.
Premenstrual regulation of the pro-angiogenic factor CYR61 in human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmsLnO&md5=e61eb0ef91d41454e401dbd899d23b8fCAS | 18202125PubMed |

Han, Y., Caday, C. G., Nanda, A., Cavenee, W. K., and Huang, H. J. (1996). Tyrphostin AG 1478 preferentially inhibits human glioma cells expressing truncated rather than wild-type epidermal growth factor receptors. Cancer Res. 56, 3859–3861.
| 1:CAS:528:DyaK28XltlSnsLk%3D&md5=155fb20d36473c5c20437fc1d1cafcaaCAS | 8752145PubMed |

Jaramillo, M. L., Grote, B., Howse, S., Banville, M., Collins, C., and O’Connor, M. (2005). Effect of siRNA-mediated EGF receptor knockdown on cell growth and inhibitor response in A549 lung adenocarcinoma cells. In ‘Proceedings of the 2005 Annual Meeting of the American Association for Cancer Research, 16–20 April 2005, Anaheim, CA’. pp. 38–39. (AACR: Philadelphia, PA.)

Kataoka, T., Watanabe, S., Mori, E., Kadomoto, R., Tanimura, S., and Kohno, M. (2004). Synthesis and structure-activity relationships of thioflavone derivatives as specific inhibitors of the ERK-MAP kinase signaling pathway. Bioorg. Med. Chem. 12, 2397–2407.
Synthesis and structure-activity relationships of thioflavone derivatives as specific inhibitors of the ERK-MAP kinase signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVOjsro%3D&md5=17384d349d8a08fbe3d4b074d5b2d2bdCAS | 15080936PubMed |

Leu, S. J., Liu, Y., Chen, N., Chen, C. C., Lam, S. C., and Lau, L. F. (2003). Identification of a novel integrin α6 β1 binding site in the angiogenic inducer CCN1 (CYR61). J. Biol. Chem. 278, 33801–33808.
Identification of a novel integrin α6 β1 binding site in the angiogenic inducer CCN1 (CYR61).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVCrtLs%3D&md5=ac90193630097fcd6e2206b6210430aaCAS | 12826661PubMed |

Levitzki, A., and Gazit, A. (1995). Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788.
Tyrosine kinase inhibition: an approach to drug development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslWgtL4%3D&md5=835998f43bdc46afe086d3b1e5a0226fCAS | 7892601PubMed |

Luetteke, N. C., Qiu, T. H., Fenton, S. E., Troyer, K. L., Riedel, R. F., Chang, A., and Lee, D. C. (1999). Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126, 2739–2750.
| 1:CAS:528:DyaK1MXks1Wqt7s%3D&md5=4f3dadaf4bb4c12ca2de8dc383b02d01CAS | 10331984PubMed |

MacLaughlan, S. D., Palomino, W. A., Mo, B., Lewis, T. D., Lininger, R. A., and Lessey, B. A. (2007). Endometrial expression of Cyr61: a marker of estrogenic activity in normal and abnormal endometrium. Obstet. Gynecol. 110, 146–154.
Endometrial expression of Cyr61: a marker of estrogenic activity in normal and abnormal endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1agsLg%3D&md5=8c5a889b8f1247d9f95a7f9b2249b396CAS | 17601910PubMed |

Marwood, M., Visser, K., Salamonsen, L. A., and Dimitriadis, E. (2009). Interleukin-11 and leukemia inhibitory factor regulate the adhesion of endometrial epithelial cells: implications in fertility regulation. Endocrinology 150, 2915–2923.
Interleukin-11 and leukemia inhibitory factor regulate the adhesion of endometrial epithelial cells: implications in fertility regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjsrs%3D&md5=96d6af48c5ef20693b13fc99b5d6bef7CAS | 19213836PubMed |

Nelson, K. G., Takahashi, T., Bossert, N. L., Walmer, D. K., and McLachlan, J. A. (1991). Epidermal growth factor replaces estrogen in the stimulation of female genital-tract growth and differentiation. Proc. Natl. Acad. Sci. USA 88, 21–25.
Epidermal growth factor replaces estrogen in the stimulation of female genital-tract growth and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXpsFOnsA%3D%3D&md5=87ac1aac28af5ecb6f4d93a116bd5dbaCAS | 1986369PubMed |

Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F., and Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16.
Epidermal growth factor receptor (EGFR) signaling in cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Crs7k%3D&md5=cff51b39844f10649a2dea818f2a8e0dCAS | 16377102PubMed |

Olayioye, M. A., Neve, R. M., Lane, H. A., and Hynes, N. E. (2000). The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19, 3159–3167.
The ErbB signaling network: receptor heterodimerization in development and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1ajtLY%3D&md5=57a0fada9d9e37903db779fbd13a3818CAS | 10880430PubMed |

Quesnelle, K. M., Boehm, A. L., and Grandis, J. R. (2007). STAT-mediated EGFR signaling in cancer. J. Cell. Biochem. 102, 311–319.
STAT-mediated EGFR signaling in cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKjtLnF&md5=d5c796c9a65742e111f2a73349078dd6CAS | 17661350PubMed |

Rawlings, J. S., Rosler, K. M., and Harrison, D. A. (2004). The JAK/STAT signaling pathway. J. Cell Sci. 117, 1281–1283.
The JAK/STAT signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1ygtbo%3D&md5=d6ecc518b14a4b7a8d0a8963f7430218CAS | 15020666PubMed |

Sampath, D., Winneker, R. C., and Zhang, Z. (2001). Cyr61, a member of the CCN family, is required for MCF-7 cell proliferation: regulation by 17β-estradiol and overexpression in human breast cancer. Endocrinology 142, 2540–2548.
Cyr61, a member of the CCN family, is required for MCF-7 cell proliferation: regulation by 17β-estradiol and overexpression in human breast cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFGnsL4%3D&md5=d4014ac528104ba1b9f00474709c0b41CAS | 11356703PubMed |

Sato, K., Nagao, T., Iwasaki, T., Nishihira, Y., and Fukami, Y. (2003). Src-dependent phosphorylation of the EGF receptor Tyr-845 mediates Stat-p21waf1 pathway in A431 cells. Genes Cells 8, 995–1003.
Src-dependent phosphorylation of the EGF receptor Tyr-845 mediates Stat-p21waf1 pathway in A431 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVOmsw%3D%3D&md5=19a2531cbc37c1615f94e69c100ef94dCAS | 14750954PubMed |

Schmidt, M. H., Furnari, F. B., Cavenee, W. K., and Bogler, O. (2003). Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc. Natl. Acad. Sci. USA 100, 6505–6510.
Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlyhurk%3D&md5=1cb00ed9f79f243ddf0355658a75c035CAS | 12734385PubMed |

Schutze, N., Lechner, A., Groll, C., Siggelkow, H., Hufner, M., Kohrle, J., and Jakob, F. (1998). The human analog of murine cystein rich protein 61 is a 1α,25-dihydroxyvitamin D3 responsive immediate early gene in human fetal osteoblasts: regulation by cytokines, growth factors, and serum. Endocrinology 139, 1761–1770.
The human analog of murine cystein rich protein 61 is a 1α,25-dihydroxyvitamin D3 responsive immediate early gene in human fetal osteoblasts: regulation by cytokines, growth factors, and serum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVKls7g%3D&md5=84d2a4a5b929e90be0d4d832c375b8c3CAS | 9528960PubMed |

Shao, H., Cheng, H. Y., Cook, R. G., and Tweardy, D. J. (2003). Identification and characterization of signal transducer and activator of transcription 3 recruitment sites within the epidermal growth factor receptor. Cancer Res. 63, 3923–3930.
| 1:CAS:528:DC%2BD3sXlsFOjtbg%3D&md5=aef1875bed398b5d9e2ccbdeff5e02b9CAS | 12873986PubMed |

Sharma, D., Saxena, N. K., Vertino, P. M., and Anania, F. A. (2006). Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways. Endocr. Relat. Cancer 13, 629–640.
Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntF2mtbc%3D&md5=22946ce25d5611365216f758f52576f0CAS | 16728588PubMed |

Smith, S. K. (1994). Growth factors in the human endometrium. Hum. Reprod. 9, 936–946.
| 1:STN:280:DyaK2M%2FhsV2iug%3D%3D&md5=9ed836789235a8636d96581019209385CAS | 7929745PubMed |

Tasdemir, D., Mallon, R., Greenstein, M., Feldberg, L. R., Kim, S. C., Collins, K., Wojciechowicz, D., Mangalindan, G. C., Concepcion, G. P., Harper, M. K., and Ireland, C. M. (2002). Aldisine alkaloids from the Philippine sponge Stylissa massa are potent inhibitors of mitogen-activated protein kinase kinase-1 (MEK-1). J. Med. Chem. 45, 529–532.
Aldisine alkaloids from the Philippine sponge Stylissa massa are potent inhibitors of mitogen-activated protein kinase kinase-1 (MEK-1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVOmurY%3D&md5=5f11a6e069b3b39e2c1e43f703674ea1CAS | 11784156PubMed |

Tomooka, Y., DiAugustine, R. P., and McLachlan, J. A. (1986). Proliferation of mouse uterine epithelial cells in vitro. Endocrinology 118, 1011–1018.
Proliferation of mouse uterine epithelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xht1ertL0%3D&md5=03079453d9c8f7ae6cfafbcc76bc31c6CAS | 3004888PubMed |

Watari, H., Xiong, Y., Hassan, M. K., and Sakuragi, N. (2009). Cyr61, a member of ccn (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family, predicts survival of patients with endometrial cancer of endometrioid subtype. Gynecol. Oncol. 112, 229–234.
Cyr61, a member of ccn (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family, predicts survival of patients with endometrial cancer of endometrioid subtype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFajsL7F&md5=84b9ba83c4adf9ba5977d73a3d08f037CAS | 19007976PubMed |

Zhang, Z., Krause, M., and Davis, D. L. (1992). Epidermal growth factor receptors in porcine endometrium: binding characteristics and the regulation of prostaglandin E and F2 alpha production. Biol. Reprod. 46, 932–936.
Epidermal growth factor receptors in porcine endometrium: binding characteristics and the regulation of prostaglandin E and F2 alpha production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xit1yqur0%3D&md5=7e2a811e9858d1bfc087afc8839336e9CAS | 1591349PubMed |

Zhou, Y., Li, S., Hu, Y. P., Wang, J., Hauser, J., Conway, A. N., Vinci, M. A., Humphrey, L., Zborowska, E., Willson, J. K., and Brattain, M. G. (2006). Blockade of EGFR and ErbB2 by the novel dual EGFR and ErbB2 tyrosine kinase inhibitor GW572016 sensitizes human colon carcinoma GEO cells to apoptosis. Cancer Res. 66, 404–411.
Blockade of EGFR and ErbB2 by the novel dual EGFR and ErbB2 tyrosine kinase inhibitor GW572016 sensitizes human colon carcinoma GEO cells to apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFWmtg%3D%3D&md5=0f1e865681b82ae67ac9bd1d20738556CAS | 16397255PubMed |

Zhu, X. F., Liu, Z. C., Xie, B. F., Li, Z. M., Feng, G. K., Yang, D., and Zeng, Y. X. (2001). EGFR tyrosine kinase inhibitor AG1478 inhibits cell proliferation and arrests cell cycle in nasopharyngeal carcinoma cells. Cancer Lett. 169, 27–32.
EGFR tyrosine kinase inhibitor AG1478 inhibits cell proliferation and arrests cell cycle in nasopharyngeal carcinoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlWmsLk%3D&md5=857a5f305aaa9f657b67352a9c0e6985CAS | 11410322PubMed |

Zimmer, S., Kahl, P., Buhl, T. M., Steiner, S., Wardelmann, E., Merkelbach-Bruse, S., Buettner, R., and Heukamp, L. C. (2009). Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling. J. Cancer Res. Clin. Oncol. 135, 723–730.
Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVagtLg%3D&md5=7b6dea918b4e50cfc20853bc17ccfabeCAS | 19002495PubMed |