Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Regulation of XFGF8 gene expression through SRY (sex-determining region Y)-box 2 in developing Xenopus embryos

Yong Hwan Kim A B , Jee Yoon Shin A , Wonho Na A , Jungho Kim A , Bong-Gun Ju A C and Won-Sun Kim A C
+ Author Affiliations
- Author Affiliations

A Department of Life Science, Sogang University, Seoul 121-742, Korea.

B Present address: Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 352, USA.

C Corresponding authors. Emails: wskim@sogang.ac.kr; bgju@sogang.ac.kr

Reproduction, Fertility and Development 24(6) 769-777 https://doi.org/10.1071/RD10332
Submitted: 6 December 2010  Accepted: 3 August 2011   Published: 10 January 2012

Abstract

Fibroblast growth factors (FGFs) function as mitogens and morphogens during vertebrate development. In the present study, to characterise the regulatory mechanism of FGF8 gene expression in developing Xenopus embryos the upstream region of the Xenopus FGF8 (XFGF8) gene was isolated. The upstream region of the XFGF8 gene contains two putative binding sites for the SRY (sex-determining region Y)-box 2 (SOX2) transcription factor. A reporter assay with serially deleted constructs revealed that the putative SOX2-binding motif may be a critical cis-element for XFGF8 gene activation in developing Xenopus embryos. Furthermore, Xenopus SOX2 (XSOX2) physically interacted with the SOX2-binding motif within the upstream region of the XFGF8 gene in vitro and in vivo. Depletion of endogenous XSOX2 resulted in loss of XFGF8 gene expression in midbrain–hindbrain junction, auditory placode, lens placode and forebrain in developing Xenopus embryos. Collectively, our results suggest that XSOX2 directly upregulates XFGF8 gene expression in the early embryonic development of Xenopus.

Additional keywords: brain development, gene regulation, promoter analysis.


References

Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C., and Robertis, E. M. (2000). Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127, 1173–1183.
| 1:CAS:528:DC%2BD3cXisVyhtbc%3D&md5=8d8ab805d060315afaea6418174a3d6cCAS | 10683171PubMed |

Ambrosetti, D. C., Basilico, C., and Dailey, L. (1997). Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein–protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol. Cell. Biol. 17, 6321–6329.
| 1:CAS:528:DyaK2sXntVSjtrc%3D&md5=2483cd2314f07cd4e19f2f9a5c1975c1CAS | 9343393PubMed |

Böttcher, R. T., and Niehrs, C. (2005). Fibroblast growth factor signaling during early vertebrate development. Endocr. Rev. 26, 63–77.
Fibroblast growth factor signaling during early vertebrate development.Crossref | GoogleScholarGoogle Scholar | 15689573PubMed |

Brondani, V., Klimkait, T., Egly, J. M., and Hamy, F. (2002). Promoter of FGF8 reveals a unique regulation by unliganded RARalpha. J. Mol. Biol. 319, 715–728.
Promoter of FGF8 reveals a unique regulation by unliganded RARalpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVahsbY%3D&md5=cca10c3fb91a2dea1e5bbcfc615b95d9CAS | 12054865PubMed |

Bylund, M., Andersson, E., Novitch, B. G., and Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nat. Neurosci. 6, 1162–1168.
Vertebrate neurogenesis is counteracted by Sox1–3 activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVOiur0%3D&md5=154d936a09f909e34de2a6a63c19aa8dCAS | 14517545PubMed |

Christen, B., and Slack, J. M. (1997). FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev. Biol. 192, 455–466.
FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVCjtA%3D%3D&md5=6c2bf5d599227eca1961505bff453dfcCAS | 9441681PubMed |

Creuzet, S., Couly, G., and Douarin, N. M. (2005). Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies. J. Anat. 207, 447–459.
Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies.Crossref | GoogleScholarGoogle Scholar | 16313387PubMed |

Crossley, P. H., and Martin, G. R. (1995). The mouse FGF8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451.
| 1:CAS:528:DyaK2MXjsl2nt7s%3D&md5=2f6c7f1e717aed12938df5b6f41a2c27CAS | 7768185PubMed |

Echevarria, D., Belo, J. A., and Martinez, S. (2005). Modulation of FGF8 activity during vertebrate brain development. Brain Res. Brain Res. Rev. 49, 150–157.
Modulation of FGF8 activity during vertebrate brain development.Crossref | GoogleScholarGoogle Scholar | 16111545PubMed |

Farre, D., Roset, R., Huerta, M., Adsuara, J. E., Rosello, L., Alba, M. M., and Messeguer, X. (2003). Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 31, 3651–3653.
Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVWis78%3D&md5=0b41d37a71f22e25d1cc0a2cd3ca2e7aCAS | 12824386PubMed |

Fletcher, R. B., Baker, J. C., and Harland, R. M. (2006). FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133, 1703–1714.
FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVOmtrc%3D&md5=4bed3005c028e828b69f82d05ccd7b3aCAS | 16554360PubMed |

Gemel, J., Jacobsen, C., and MacArthur, C. A. (1999). Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbx1-binding sites. J. Biol. Chem. 274, 6020–6026.
Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbx1-binding sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFegt7c%3D&md5=8f60ea98a8d78796da741d27df227846CAS | 10026229PubMed |

Hardcastle, Z., Chalmers, A. D., and Papalopulu, N. (2000). FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos. Curr. Biol. 10, 1511–1514.
FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslGnu7g%3D&md5=ec8facfab1bc2b0e4daae2a16c657ba5CAS | 11114518PubMed |

Inoue, F., Parvin, M. S., and Yamasu, K. (2008). Transcription of FGF8 is regulated by activating and repressive cis-elements at the midbrain–hindbrain boundary in zebrafish embryos. Dev. Biol. 316, 471–486.
Transcription of FGF8 is regulated by activating and repressive cis-elements at the midbrain–hindbrain boundary in zebrafish embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVKrtLY%3D&md5=ca77cf03d15e5eb5ccb13f79ff7f87e0CAS | 18280464PubMed |

Itoh, N. (2007). The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol. Pharm. Bull. 30, 1819–1825.
The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2jtLnJ&md5=65923a06240b6be044d2ac3b7d589071CAS | 17917244PubMed |

Joyner, A. L., Liu, A., and Millet, S. (2000). Otx2, Gbx2 and FGF8 interact to position and maintain a mid–hindbrain organizer. Curr. Opin. Cell Biol. 12, 736–741.
Otx2, Gbx2 and FGF8 interact to position and maintain a mid–hindbrain organizer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVagsb8%3D&md5=e6409cf7ed55966a61d0c1ab6fa00cb7CAS | 11063941PubMed |

Kamachi, Y., Cheah, K. S., and Kondoh, H. (1999). Mechanism of regulatory target selection by the SOX high-mobility-group domain proteins as revealed by comparison of SOX1/2/3 and SOX9. Mol. Cell. Biol. 19, 107–120.
| 1:CAS:528:DyaK1MXhvFOnsw%3D%3D&md5=2b0b5c91bbd98a24b09e2d515381def7CAS | 9858536PubMed |

Kelberman, D., Castro, S. C., Huang, S., Crolla, J. A., Palmer, R., Gregory, J. W., Taylor, D., Cavallo, L., Faienza, M. F., Fischetto, R., Achermann, J. C., Martinez-Barbera, J. P., Rizzoti, K., Lovell-Badge, R., Robinson, I. C., Gerrelli, D., and Dattani, M. T. (2008). Sox2 plays a critical role in the pituitary, forebrain, and eye during human embryonic development. J. Clin. Endocrinol. Metab. 93, 1865–1873.
Sox2 plays a critical role in the pituitary, forebrain, and eye during human embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFWgsbY%3D&md5=ca9589aa668c26998d4a653b15fc38e8CAS | 18285410PubMed |

Kiefer, J. C. (2007). Back to basics: Sox genes. Dev. Dyn. 236, 2356–2366.
Back to basics: Sox genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2hs7jO&md5=4cec4de856a866438533e94a391e6494CAS | 17584862PubMed |

Kim, S. W., Park, J. I., Spring, C. M., Sater, A. K., Ji, H., Otchere, A. A., Daniel, J. M., and McCrea, P. D. (2004). Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nat. Cell Biol. 6, 1212–1220.
Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVarsL%2FI&md5=ae3fc89f40eae1a45926b155b46d395eCAS | 15543138PubMed |

Kurayoshi, M., Yamamoto, H., Izumi, S., and Kikuchi, A. (2007). Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem. J. 402, 515–523.
Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVKhsbc%3D&md5=437dd4b9e7a1ebf65cdfcc9b80bb7cc3CAS | 17117926PubMed |

Mahmood, R., Bresnick, J., Hornbruch, A., Mahony, C., Morton, N., Colquhoun, K., Martin, P., Lumsden, A., Dickson, C., and Mason, I. (1995). A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr. Biol. 5, 797–806.
A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt1ags7s%3D&md5=ecf279d34cd14541420dbef84499fce5CAS | 7583127PubMed |

Messeguer, X., Escudero, R., Farre, D., Nunez, O., Martinez, J., and Alba, M. M. (2002). PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18, 333–334.
PROMO: detection of known transcription regulatory elements using species-tailored searches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFentr4%3D&md5=60bee4c7721a0781f47780b7b9a2656aCAS | 11847087PubMed |

Miyagi, S., Masui, S., Niwa, H., Saito, T., Shimazaki, T., Okano, H., Nishimoto, M., Muramatsu, M., Iwama, A., and Okuda, A. (2008). Consequence of the loss of SOX2 in the developing brain of the mouse. FEBS Lett. 582, 2811–2815.
Consequence of the loss of SOX2 in the developing brain of the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVGhsL8%3D&md5=7b8f89fc381f53c332c135f41f985181CAS | 18638478PubMed |

Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S., and Sasai, Y. (1998). Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125, 579–587.
| 1:CAS:528:DyaK1cXhvFWgtLw%3D&md5=8f97900cbd375adac6716d9a7dfdb572CAS | 9435279PubMed |

Murakami, A., Ishida, S., Thurlow, J., Revest, J. M., and Dickson, C. (2001). SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res. 29, 3347–3355.
SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFSruro%3D&md5=ae458d14160d8d55f71185b2d37d204dCAS | 11504872PubMed |

Nieuwkoop, P. D., and Faber, J. (1967). ‘Normal table of Xenopus laevis (Daudin).’ (North Holland, Amsterdam.)

Nieuwkoop, P. D., and Faber, J. (1994). ‘Normal table of Xenopus laevis.’ (Garland Publishing: New York.)

Nitta, K. R., Takahashi, S., Haramoto, Y., Fukuda, M., Onuma, Y., and Asashima, M. (2006). Expression of Sox1 during Xenopus early embryogenesis. Biochem. Biophys. Res. Commun. 351, 287–293.
Expression of Sox1 during Xenopus early embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFequ7zN&md5=e951432dbcbf2e3b6a99eb06a72a4ffbCAS | 17056008PubMed |

Okuda, Y., Ogura, E., Kondoh, H., and Kamachi, Y. (2010). B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. PLoS Genet. 6, e1000936.
B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo.Crossref | GoogleScholarGoogle Scholar | 20463883PubMed |

Pevny, L., and Placzek, M. (2005). SOX genes and neural progenitor identity. Curr. Opin. Neurobiol. 15, 7–13.
SOX genes and neural progenitor identity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFShsLY%3D&md5=ef98154569fce468fd31b928c168c0d2CAS | 15721738PubMed |

Pujic, Z., Omori, Y., Tsujikawa, M., Thisse, B., Thisse, C., and Malicki, J. (2006). Reverse genetic analysis of neurogenesis in the zebrafish retina. Dev. Biol. 293, 330–347.
Reverse genetic analysis of neurogenesis in the zebrafish retina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVOnu7g%3D&md5=278ce698050d07c67c873959e3ae5343CAS | 16603149PubMed |

Puligilla, C., Dabdoub, A., Brenowitz, S. D., and Kelley, M. W. (2010). Sox2 induces neuronal formation in the developing mammalian cochlea. J. Neurosci. 30, 714–722.
Sox2 induces neuronal formation in the developing mammalian cochlea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFahtb4%3D&md5=6eef3b5b4d425b4d6d2c2638f257f660CAS | 20071536PubMed |

Sambrook, J., and Russell, D. W. (2001). ‘Molecular Cloning.’ (Cold Spring Harbor Laboratory Press: New York.)

Shim, S., Bae, N., Park, S. Y., Kim, W. S., and Han, M. J. (2005). Isolation of Xenopus FGF-8b and comparison with FGF-8a. Mol. Cells 19, 310–317.
| 1:CAS:528:DC%2BD2MXms12isrw%3D&md5=d0807337ffb299968a723bdee30be783CAS | 15995346PubMed |

Sive, S., Grainger, R. M., and Harland, R. M. (2000). ‘Early development of Xenopus laevis.’ (Cold Spring Harbor Laboratory Press: New York.)

Smale, S. T. (1997). Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim. Biophys. Acta 1351, 73–88.
| 1:CAS:528:DyaK2sXhsFKmtb0%3D&md5=8c49ed7b21dc74cc1035c1e0ddb2ca3eCAS | 9116046PubMed |

Taylor, K. M., and Labonne, C. (2005). SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev. Cell 9, 593–603.
SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1alsLrJ&md5=7f631eee2ae79ab96926654b8b39f3d4CAS | 16256735PubMed |

Vogel, A., Rodriguez, C., and Izpisua-Belmonte, J. C. (1996). Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750.
| 1:CAS:528:DyaK28XjvVeqt7g%3D&md5=74d352cf2a54efc826fb5ab330cea5c0CAS | 8674413PubMed |

Wegner, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409–1420.
From head to toes: the multiple facets of Sox proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFens7s%3D&md5=2ed47b325d5e6adc83efef57180f5a98CAS | 10037800PubMed |

Wilson, M., and Koopman, P. (2002). Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr. Opin. Genet. Dev. 12, 441–446.
Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvF2isbc%3D&md5=c3fa0de80da053fc70260d66a3417ac5CAS | 12100890PubMed |

Wissmuller, S., Kosian, T., Wolf, M., Finzsch, M., and Wegner, M. (2006). The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucleic Acids Res. 34, 1735–1744.
The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors.Crossref | GoogleScholarGoogle Scholar | 16582099PubMed |

Yuan, H., Corbi, N., Basilico, C., and Dailey, L. (1995). Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 9, 2635–2645.
Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpt1OhtLk%3D&md5=6bd37111a37c6da50bbd2f4afb0c759eCAS | 7590241PubMed |