Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation

Robert B. Gilchrist
+ Author Affiliations
- Author Affiliations

Robinson Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Adelaide, SA 5005, Australia. Email: robert.gilchrist@adelaide.edu.au

Reproduction, Fertility and Development 23(1) 23-31 https://doi.org/10.1071/RD10225
Published: 7 December 2010

Abstract

The last 5–10 years of research in ovarian and oocyte biology has delivered some major new advances in knowledge of the molecular and cellular processes regulating oocyte maturation and oocyte developmental competence. These new insights include, among others: (1) the knowledge that oocytes regulate granulosa and cumulus cell differentiation, ovulation rate and fertility via the secretion of soluble paracrine growth factors; (2) new perspectives on the participation of cyclic nucleotides, phosphodiesterases and gap junctions in the regulation of oocyte meiotic arrest and resumption; and (3) the new appreciation of the mechanisms of LH-induced oocyte maturation and ovulation mediated by the follicular cascade of epidermal growth factor (EGF)-like peptides, the EGF receptor and their intracellular second messengers. These recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to oocyte in vitro maturation (IVM). Laboratory IVM methodologies have changed little over the past 20–30 years and IVM remains notably less efficient than hormone-stimulated IVF, limiting its wider application in reproductive medicine and animal breeding. The challenge for oocyte biologists and clinicians practicing IVM is to modernise clinical IVM systems to benefit from these new insights into oocyte–follicle cell interactions in vivo.

Additional keywords: artificial reproductive technology (ART), cAMP, embryo production, GDF9, oocyte IVM, simulated physiological oocyte maturation (SPOM).


References

Aktas, H., Wheeler, M. B., Rosenkrans, C. F., Jr, First, N. L., and Leibfried Rutledge, M. L. (1995). Maintenance of bovine oocytes in prophase of meiosis I by high [cAMP]i. J. Reprod. Fertil. 105, 227–235.
Maintenance of bovine oocytes in prophase of meiosis I by high [cAMP]i.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslSgsQ%3D%3D&md5=7686d1d598a8da0c10b640f80592bfd3CAS | 8568765PubMed |

Albuz, F. K., Sasseville, M., Lane, M., Armstrong, D. T., Thompson, J. G., and Gilchrist, R. B. (2010). Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum. Reprod. , .
Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar |

Anderson, E., and Albertini, D. F. (1976). Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J. Cell Biol. 71, 680–686.
Gap junctions between the oocyte and companion follicle cells in the mammalian ovary.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s%2FltFCgtA%3D%3D&md5=e588110f593815dc3583b4e6d26b8796CAS | 825522PubMed |

Ashkenazi, H., Cao, X., Motola, S., Popliker, M., Conti, M., and Tsafriri, A. (2005). Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology 146, 77–84.
Epidermal growth factor family members: endogenous mediators of the ovulatory response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFGmt7jP&md5=830c2a73197576f6c67c41982b411031CAS | 15459120PubMed |

Assidi, M., Dufort, I., Ali, A., Hamel, M., Algriany, O., Dielemann, S., and Sirard, M. A. (2008). Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol. Reprod. 79, 209–222.
Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFWms7o%3D&md5=9f4545ac1d9e0743f2d009ab2ed88debCAS | 18417710PubMed |

Baart, E. B., Martini, E., Eijkemans, M. J., Van Opstal, D., Beckers, N. G., Verhoeff, A., Macklon, N. S., and Fauser, B. C. (2007). Milder ovarian stimulation for in vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum. Reprod. 22, 980–988.
Milder ovarian stimulation for in vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial.Crossref | GoogleScholarGoogle Scholar | 17204525PubMed |

Buccione, R., Vanderhyden, B. C., Caron, P. J., and Eppig, J. J. (1990). FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev. Biol. 138, 16–25.
FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslamu74%3D&md5=a6d0c4fc75a84e5ed45dfc9fbd02794bCAS | 2155145PubMed |

Buckett, W. M., Chian, R. C., Dean, N. L., Sylvestre, C., Holzer, H. E., and Tan, S. L. (2008). Pregnancy loss in pregnancies conceived after in vitro oocyte maturation, conventional in vitro fertilization, and intracytoplasmic sperm injection. Fertil. Steril. 90, 546–550.
Pregnancy loss in pregnancies conceived after in vitro oocyte maturation, conventional in vitro fertilization, and intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 17904128PubMed |

Child, T. J., Phillips, S. J., Abdul-Jalil, A. K., Gulekli, B., and Tan, S. L. (2002). A comparison of in vitro maturation and in vitro fertilization for women with polycystic ovaries. Obstet. Gynecol. 100, 665–670.
A comparison of in vitro maturation and in vitro fertilization for women with polycystic ovaries.Crossref | GoogleScholarGoogle Scholar | 12383531PubMed |

Dekel, N. (1988). Regulation of oocyte maturation. The role of cAMP. Ann. N. Y. Acad. Sci. 541, 211–216.
Regulation of oocyte maturation. The role of cAMP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXovVOisw%3D%3D&md5=f099946ade1c3ab5156e6d6fb500cabeCAS | 2848437PubMed |

Diaz, F. J., Wigglesworth, K., and Eppig, J. J. (2007). Oocytes determine cumulus cell lineage in mouse ovarian follicles. J. Cell Sci. 120, 1330–1340.
Oocytes determine cumulus cell lineage in mouse ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFSjtLw%3D&md5=b64be82010082fe2d3d59cebc336e2a1CAS | 17389684PubMed |

Dong, J., Albertini, D. F., Nishimori, K., Kumar, T. R., Lu, N., and Matzuk, M. M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535.
Growth differentiation factor-9 is required during early ovarian folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1GrsL0%3D&md5=48b15c6330513b79a559621c204d8208CAS | 8849725PubMed |

Downs, S. M. (2010). Regulation of the G2/M transition in rodent oocytes. Mol. Reprod. Dev. 77, 566–585.
Regulation of the G2/M transition in rodent oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVahsL8%3D&md5=6b7d65cd92ad799a99219256146cf006CAS | 20578061PubMed |

Downs, S. M., and Chen, J. (2008). EGF-like peptides mediate FSH-induced maturation of cumulus cell-enclosed mouse oocytes. Mol. Reprod. Dev. 75, 105–114.
EGF-like peptides mediate FSH-induced maturation of cumulus cell-enclosed mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 17549700PubMed |

Downs, S. M., Daniel, S. A., and Eppig, J. J. (1988). Induction of maturation in cumulus cell-enclosed mouse oocytes by follicle-stimulating hormone and epidermal growth factor: evidence for a positive stimulus of somatic cell origin. J. Exp. Zool. 245, 86–96.
Induction of maturation in cumulus cell-enclosed mouse oocytes by follicle-stimulating hormone and epidermal growth factor: evidence for a positive stimulus of somatic cell origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXht1Ghsr0%3D&md5=154f4be4f2472f1850f4e022eee73d24CAS | 2832512PubMed |

Dragovic, R. A., Ritter, L. J., Schulz, S. J., Amato, F., Armstrong, D. T., and Gilchrist, R. B. (2005). Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology 146, 2798–2806.
Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslehsrg%3D&md5=6530e76113e169c398e663e2041f648fCAS | 15761035PubMed |

Dragovic, R. A., Ritter, L. J., Schulz, S. J., Amato, F., Thompson, J. G., Armstrong, D. T., and Gilchrist, R. B. (2007). Oocyte-secreted factor activation of SMAD 2/3 signalling enables initiation of mouse cumulus cell expansion. Biol. Reprod. 76, 848–857.
Oocyte-secreted factor activation of SMAD 2/3 signalling enables initiation of mouse cumulus cell expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1OhsL0%3D&md5=468d0e9db86ebb810a0d98ff7b5b70fbCAS | 17192514PubMed |

Edwards, R. G. (1965). Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208, 349–351.
Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF287lsVagsg%3D%3D&md5=4a7292dd91669d560bca50d0317ab0c4CAS | 4957259PubMed |

Eppig, J. J. (2001). Oocyte control of ovarian follicular development and function in mammals. Reproduction 122, 829–838.
Oocyte control of ovarian follicular development and function in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWjsw%3D%3D&md5=bc2007000ca7c307eaddb9b4dc93386eCAS | 11732978PubMed |

Eppig, J. J., Wigglesworth, K., Pendola, F., and Hirao, Y. (1997). Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol. Reprod. 56, 976–984.
Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFKgtbg%3D&md5=0a2edf6dff9450d813d2ad34aef75284CAS | 9096881PubMed |

Eppig, J. J., O’Brien, M. J., Wigglesworth, K., Nicholson, A., Zhang, W., and King, B. A. (2009). Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring. Hum. Reprod. 24, 922–928.
Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3htlyrsw%3D%3D&md5=0e74ffb57fc78d25ee6ed3cf96b1d25dCAS | 19151027PubMed |

Fan, H. Y., Liu, Z., Shimada, M., Sterneck, E., Johnson, P. F., Hedrick, S. M., and Richards, J. S. (2009). MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324, 938–941.
MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnu74%3D&md5=0749fd8bf5c32a32e12796a9e29264f3CAS | 19443782PubMed |

Feuerstein, P., Cadoret, V., Dalbies-Tran, R., Guerif, F., Bidault, R., and Royere, D. (2007). Gene expression in human cumulus cells: one approach to oocyte competence. Hum. Reprod. 22, 3069–3077.
Gene expression in human cumulus cells: one approach to oocyte competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKltLjP&md5=038fd8c5eb6d66dd6299220b8c98a75dCAS | 17951581PubMed |

Galloway, S. M., McNatty, K. P., Cambridge, L. M., Laitinen, M. P., Juengel, J. L., et al. (2000). Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25, 279–283.
Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFKltbs%3D&md5=90d3fd37e1aa445af800ebdc27ad6c22CAS | 10888873PubMed |

Gilchrist, R. B., and Thompson, J. G. (2007). Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology 67, 6–15.
Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro.Crossref | GoogleScholarGoogle Scholar | 17092551PubMed |

Gilchrist, R. B., Ritter, L. J., and Armstrong, D. T. (2001). Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. Dev. Biol. 240, 289–298.
Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFegtrc%3D&md5=434f5d16474afd7ea305b4ce13f5c908CAS | 11784064PubMed |

Gilchrist, R. B., Ritter, L. J., and Armstrong, D. T. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82–83, 431–446.
Oocyte–somatic cell interactions during follicle development in mammals.Crossref | GoogleScholarGoogle Scholar | 15271471PubMed |

Gilchrist, R. B., Ritter, L. J., Myllymaa, S., Kaivo-Oja, N., Dragovic, R. A., Hickey, T. E., Ritvos, O., and Mottershead, D. G. (2006). Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. J. Cell Sci. 119, 3811–3821.
Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgt7vJ&md5=0b70c2f9de98a08a389e435078a08b2dCAS | 16926195PubMed |

Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=a8a69db87f90fc0b448eac6bc90283eeCAS | 18175787PubMed |

Gilchrist, R. B., Smitz, J. E. J., and Thompson, J. G. (2010). Current status and future trends of the clinical practice of human oocyte in vitro maturation. In ‘Human Assisted Reproductive Technology: Future Trends in Laboratory & Clinical Practice’. (Eds D. K. Gardner, B. R. M. B. Rizk and T. Falcone.) (Cambridge University Press: Cambridge.) (in press)

Guixue, Z., Luciano, A. M., Coenen, K., Gandolfi, F., and Sirard, M. A. (2001). The influence of cAMP before or during bovine oocyte maturation on embryonic developmental competence. Theriogenology 55, 1733–1743.
The influence of cAMP before or during bovine oocyte maturation on embryonic developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlCltr4%3D&md5=e41f62e0713bc91d9ae2266454813b56CAS | 11393223PubMed |

Hsieh, M., Lee, D., Panigone, S., Horner, K., Chen, R., Theologis, A., Lee, D. C., Threadgill, D. W., and Conti, M. (2007). Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol. Cell. Biol. 27, 1914–1924.
Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Wgu74%3D&md5=7fe168008873457359d63f9df2f77b0bCAS | 17194751PubMed |

Hussein, T. S., Froiland, D. A., Amato, F., Thompson, J. G., and Gilchrist, R. B. (2005). Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 118, 5257–5268.
Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWru7rK&md5=94c8c9e5f97d75b8eaa82ade2ee927bbCAS | 16263764PubMed |

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
Oocyte-secreted factors enhance oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2gsb4%3D&md5=10bb841524b66b82370d547c1a07c0d6CAS | 16854407PubMed |

Kaivo-oja, N., Jeffery, L. A., Ritvos, O., and Mottershead, D. G. (2006). Smad signalling in the ovary. Reprod. Biol. Endocrinol. 4, 21–34.
Smad signalling in the ovary.Crossref | GoogleScholarGoogle Scholar | 16611366PubMed |

Leibfried-Rutledge, M. L., Critser, E. S., Eyestone, W. H., Northey, D. L., and First, N. L. (1987). Development potential of bovine oocytes matured in vitro or in vivo. Biol. Reprod. 36, 376–383.
Development potential of bovine oocytes matured in vitro or in vivo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3hsVemsQ%3D%3D&md5=d8b5e39243083727426fed5d69e271b3CAS | 3580458PubMed |

Li, Q., McKenzie, L. J., and Matzuk, M. M. (2008). Revisiting oocyte–somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Mol. Hum. Reprod. 14, 673–678.
Revisiting oocyte–somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2gsw%3D%3D&md5=28006649786ce469ebfe242845c0ed4aCAS | 18996952PubMed |

Li, Q., Rajanahally, S., Edson, M. A., and Matzuk, M. M. (2009). Stable expression and characterization of N-terminal tagged recombinant human bone morphogenetic protein 15. Mol. Hum. Reprod. 15, 779–788.
Stable expression and characterization of N-terminal tagged recombinant human bone morphogenetic protein 15.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVajsLzM&md5=75781a92c2f079fbceeebc738468f285CAS | 19651638PubMed |

Li, R., Norman, R. J., Armstrong, D. T., and Gilchrist, R. B. (2000). Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol. Reprod. 63, 839–845.
Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCiu7g%3D&md5=dddcbfe10d9d54fbaa7f01827909b461CAS | 10952929PubMed |

Luciano, A. M., Pocar, P., Milanesi, E., Modina, S., Rieger, D., Lauria, A., and Gandolfi, F. (1999). Effect of different levels of intracellular cAMP on the in vitro maturation of cattle oocytes and their subsequent development following in vitro fertilization. Mol. Reprod. Dev. 54, 86–91.
Effect of different levels of intracellular cAMP on the in vitro maturation of cattle oocytes and their subsequent development following in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFanurs%3D&md5=1481e1365ffdc9ea379e45d4293258fdCAS | 10423303PubMed |

Market-Velker, B. A., Zhang, L., Magri, L. S., Bonvissuto, A. C., and Mann, M. R. (2010). Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet. 19, 36–51.
Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhu7jL&md5=45b524c31fb4cc63985b3231e5bed6daCAS | 19805400PubMed |

McKenzie, L. J., Pangas, S. A., Carson, S. A., Kovanci, E., Cisneros, P., Buster, J. E., Amato, P., and Matzuk, M. M. (2004). Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 19, 2869–2874.
Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2crotVyisA%3D%3D&md5=aa54f26409adf99ebefee22fdb19e269CAS | 15471935PubMed |

McNatty, K. P., Moore, L. G., Hudson, N. L., Quirke, L. D., Lawrence, S. B., et al. (2004). The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology. Reproduction 128, 379–386.
The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlGjs7Y%3D&md5=a45edee5282939b72f91032774ac20f1CAS | 15454632PubMed |

McNatty, K. P., Lawrence, S., Groome, N. P., Meerasahib, M. F., Hudson, N. L., Whiting, L., Heath, D. A., and Juengel, J. L. (2006). Meat and livestock association plenary lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants. Reprod. Fertil. Dev. 18, 403–412.
Meat and livestock association plenary lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtV2hurY%3D&md5=8a3c57fc3abdd3d4b494a0e25b963222CAS | 16737633PubMed |

Mehlmann, L. M., Jones, T. L., and Jaffe, L. A. (2002). Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte. Science 297, 1343–1345.
Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1ejtbY%3D&md5=a3f130e18bfeb2d34d93e204e1759ab4CAS | 12193786PubMed |

Mottershead, D. G., Pulkki, M. M., Muggalla, P., Pasternack, A., Tolonen, M., et al. (2008). Characterization of recombinant human growth differentiation factor-9 signalling in ovarian granulosa cells. Mol. Cell. Endocrinol. 283, 58–67.
Characterization of recombinant human growth differentiation factor-9 signalling in ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVegtr4%3D&md5=883527370bb8c4fbc8699a8d7cec168cCAS | 18162287PubMed |

Nogueira, D., Cortvrindt, R., De Matos, D. G., Vanhoutte, L., and Smitz, J. (2003). Effect of phosphodiesterase type 3 inhibitor on developmental competence of immature mouse oocytes in vitro. Biol. Reprod. 69, 2045–2052.
Effect of phosphodiesterase type 3 inhibitor on developmental competence of immature mouse oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCnsbg%3D&md5=ef690dde37ee6872cad0fde6e602d185CAS | 12930710PubMed |

Norris, R. P., Freudzon, M., Mehlmann, L. M., Cowan, A. E., Simon, A. M., Paul, D. L., Lampe, P. D., and Jaffe, L. A. (2008). Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development 135, 3229–3238.
Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCntbvP&md5=508c109fb6cc49730a6caf7e109b3a87CAS | 18776144PubMed |

Norris, R. P., Ratzan, W. J., Freudzon, M., Mehlmann, L. M., Krall, J., Movsesian, M. A., Wang, H., Ke, H., Nikolaev, V. O., and Jaffe, L. A. (2009). Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development 136, 1869–1878.
Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1aktbw%3D&md5=350351dd3cb9d167b26c5adef9c9077fCAS | 19429786PubMed |

Park, J. Y., Su, Y. Q., Ariga, M., Law, E., Jin, S. L., and Conti, M. (2004). EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303, 682–684.
EGF-like growth factors as mediators of LH action in the ovulatory follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVKlsg%3D%3D&md5=c9955792f1fbb969b2c7f7d6a546e960CAS | 14726596PubMed |

Pincus, G., and Enzmann, E. V. (1935). The comparative behaviour of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs. J. Exp. Med. 62, 665–675.
The comparative behaviour of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3crjs1agtA%3D%3D&md5=0715b3d7a32af00f7bb7ab96681daa55CAS | 19870440PubMed |

Reizel, Y., Elbaz, J., and Dekel, N. (2010). Sustained activity of the EGF receptor is an absolute requisite for LH-induced oocyte maturation and cumulus expansion. Mol. Endocrinol. 24, 402–411.
Sustained activity of the EGF receptor is an absolute requisite for LH-induced oocyte maturation and cumulus expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslejsrs%3D&md5=cd7920952580f40b0e68512a292ef555CAS | 20009084PubMed |

Rizos, D., Ward, F., Duffy, P., Boland, M. P., and Lonergan, P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–248.
Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Giug%3D%3D&md5=56f7bd3d53dc2678c5ef322a28a9b935CAS | 11803560PubMed |

Romaguera, R., Morato, R., Jimenez-Macedo, A. R., Catala, M., Roura, M., Paramio, M. T., Palomo, M. J., Mogas, T., and Izquierdo, D. (2010). Oocyte-secreted factors improve embryo developmental competence of COCs from small follicles in prepubertal goats. Theriogenology 74, 1050–1059.
Oocyte-secreted factors improve embryo developmental competence of COCs from small follicles in prepubertal goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjpvFyisg%3D%3D&md5=0dc5fa7c5816f4bf3d67d314d298b3e8CAS | 20542547PubMed |

Salustri, A., Yanagishita, M., and Hascall, V. C. (1990). Mouse oocytes regulate hyaluronic acid synthesis and mucification by FSH-stimulated cumulus cells. Dev. Biol. 138, 26–32.
Mouse oocytes regulate hyaluronic acid synthesis and mucification by FSH-stimulated cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFaisbc%3D&md5=ab488ff6862a64fac7fc59925fea0b0dCAS | 2155146PubMed |

Sasseville, M., Albuz, F. K., Cote, N., Guillemette, C., Gilchrist, R. B., and Richard, F. J. (2009). Characterization of novel phosphodiesterases in the bovine ovarian follicle. Biol. Reprod. 81, 415–425.
Characterization of novel phosphodiesterases in the bovine ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVaiurg%3D&md5=dd77a640f5fe095ed71f7a0075e4387aCAS | 19357367PubMed |

Sasseville, M., Ritter, L. J., Nguyen, T. M., Liu, F., Mottershead, D. G., Russell, D. L., and Gilchrist, R. B. (2010). Growth differentiation factor 9 signalling requires ERK1/2 activity in mouse granulosa and cumulus cells. J. Cell Sci. 123, 3166–3176.
Growth differentiation factor 9 signalling requires ERK1/2 activity in mouse granulosa and cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls73I&md5=3f13e10bb7c9dce4d385d9cdd6ddefd9CAS | 20736313PubMed |

Scaramuzzi, R. J., Baird, D. T., Campbell, B. K., Driancourt, M. A., Dupont, J., et al. (2010). Regulation of folliculogenesis and the determination of ovulation rate: a review. Reprod. Fertil. Dev., in press.

Schroeder, A. C., and Eppig, J. J. (1984). The developmental capacity of mouse oocytes that matured spontaneously in vitro is normal. Dev. Biol. 102, 493–497.
The developmental capacity of mouse oocytes that matured spontaneously in vitro is normal.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c7lvFaitQ%3D%3D&md5=474693c0ac3d53facbfe99448f9b68f2CAS | 6706011PubMed |

Sela-Abramovich, S., Chorev, E., Galiani, D., and Dekel, N. (2005). Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles. Endocrinology 146, 1236–1244.
Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlehtrs%3D&md5=d043faf432c6a4d9d4e19603d61ddc90CAS | 15576461PubMed |

Sela-Abramovich, S., Edry, I., Galiani, D., Nevo, N., and Dekel, N. (2006). Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology 147, 2280–2286.
Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFOrurg%3D&md5=36d9405d7be11f65c42202fd6d8c9d29CAS | 16439460PubMed |

Shimada, M., Hernandez-Gonzalez, I., Gonzalez-Robayna, I., and Richards, J. S. (2006). Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol. Endocrinol. 20, 1352–1365.
Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlSrsb8%3D&md5=a64f98665d09ac4c5fdbfe6326059023CAS | 16543407PubMed |

Shu-Chi, M., Jiann-Loung, H., Yu-Hung, L., Tseng-Chen, S., Ming, I., and Tsu-Fuh, Y. (2006). Growth and development of children conceived by in vitro maturation of human oocytes. Early Hum. Dev. 82, 677–682.
Growth and development of children conceived by in vitro maturation of human oocytes.Crossref | GoogleScholarGoogle Scholar | 16690233PubMed |

Smitz, J., Nogueira, D., Vanhoutte, L., De Matos, D. G., and Cortvrindt, R. N. (2004). Oocyte in vitro maturation. In ‘Textbook of Assisted Reproductive Techniques: Laboratory and Clinical Perspectives’. 2nd edn. (Eds D. K. Gardner, A. Weissman, C. Howles and Z. Shoham.) pp. 125–61. (Martin Dunitz Ltd: London.)

Smitz, J., Thompson, J. G., and Gilchrist, R. B. (2010). The promise of in vitro maturation in assisted reproduction and fertility preservation. Semin. Reprod. Med., in press.

Su, Y. Q., Wigglesworth, K., Pendola, F. L., O’Brien, M. J., and Eppig, J. J. (2002). Mitogen-activated protein kinase activity in cumulus cells is essential for gonadotrophin-induced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology 143, 2221–2232.
Mitogen-activated protein kinase activity in cumulus cells is essential for gonadotrophin-induced oocyte meiotic resumption and cumulus expansion in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFKjtLY%3D&md5=2d7c26ef6b5b1390e2a86a70e77b584dCAS | 12021186PubMed |

Su, Y. Q., Denegre, J. M., Wigglesworth, K., Pendola, F. L., O’Brien, M. J., and Eppig, J. J. (2003). Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex. Dev. Biol. 263, 126–138.
Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Gksrs%3D&md5=9dd14d57247f878514c4a791fc48a475CAS | 14568551PubMed |

Su, Y. Q., Wu, X., O’Brien, M. J., Pendola, F. L., Denegre, J. N., Matzuk, M. M., and Eppig, J. J. (2004). Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte–cumulus cell complex in mice: genetic evidence for an oocyte–granulosa cell regulatory loop. Dev. Biol. 276, 64–73.
Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte–cumulus cell complex in mice: genetic evidence for an oocyte–granulosa cell regulatory loop.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVOlur0%3D&md5=7d18e90212d05c8fb51249f58797d5e0CAS | 15531364PubMed |

Su, Y. Q., Sugiura, K., Wigglesworth, K., O’Brien, M. J., Affourtit, J. P., Pangas, S. A., Matzuk, M. M., and Eppig, J. J. (2008). Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135, 111–121.
Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslGmtLw%3D&md5=faee1b569f46e7a1b0e7c574fdc41fccCAS | 18045843PubMed |

Su, Y. Q., Sugiura, K., Li, Q., Wigglesworth, K., Matzuk, M. M., and Eppig, J. J. (2010). Mouse oocytes enable LH-induced maturation of the cumulus–oocyte complex via promoting EGF receptor-dependent signalling. Mol. Endocrinol. 24, 1230–1239.
Mouse oocytes enable LH-induced maturation of the cumulus–oocyte complex via promoting EGF receptor-dependent signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Smur4%3D&md5=b6703dea9e20cf44664d6e2a1a9b025bCAS | 20382892PubMed |

Sugiura, K., Pendola, F. L., and Eppig, J. J. (2005). Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev. Biol. 279, 20–30.
Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlemtb4%3D&md5=c5508cb9428a156e33331f302efc0c5cCAS | 15708555PubMed |

Suikkari, A. M. (2008). In vitro maturation: its role in fertility treatment. Curr. Opin. Obstet. Gynecol. 20, 242–248.
In vitro maturation: its role in fertility treatment.Crossref | GoogleScholarGoogle Scholar | 18460938PubMed |

Sutton, M. L., Cetica, P. D., Beconi, M. T., Kind, K. L., Gilchrist, R. B., and Thompson, J. G. (2003a). Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes. Reproduction 126, 27–34.
Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFCntbY%3D&md5=682c6320ac4d5d6bd12845be999c6a9cCAS | 12814344PubMed |

Sutton, M. L., Gilchrist, R. B., and Thompson, J. G. (2003b). Effects of in vivo and in vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update 9, 35–48.
Effects of in vivo and in vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVelt7Y%3D&md5=f4c267c21e52ce86d7bae0d9875366aeCAS | 12638780PubMed |

Sutton-McDowall, M. L., Gilchrist, R. B., and Thompson, J. G. (2010). The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139, 685–695.
The pivotal role of glucose metabolism in determining oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFajtr0%3D&md5=d32733a03f740fcee994790d3d387b1eCAS | 20089664PubMed |

Thibier, M. (2006). Transfers of both in vivo-derived and in vitro-produced embryos in cattle still on the rise and contrasted trends in other species in 2005. International Embryo Transfer Society Newsletter 24, 12–18.

Thomas, R. E., Thompson, J. G., Armstrong, D. T., and Gilchrist, R. B. (2004). Effect of specific phosphodiesterase isoenzyme inhibitors during in vitro maturation of bovine oocytes on meiotic and developmental capacity. Biol. Reprod. 71, 1142–1149.
Effect of specific phosphodiesterase isoenzyme inhibitors during in vitro maturation of bovine oocytes on meiotic and developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7Y%3D&md5=b1cd6b0391f9e5e91caa5167841554c1CAS | 15189837PubMed |

Thompson, J. G., Gardner, D. K., Pugh, P. A., McMillan, W. H., and Tervit, H. R. (1995). Lamb birth-weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol. Reprod. 53, 1385–1391.
Lamb birth-weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVeisrs%3D&md5=2624b2529e635b6c059a1334f8b0af62CAS | 8562695PubMed |

Törnell, J., Billig, H., and Hillensjo, T. (1991). Regulation of oocyte maturation by changes in ovarian levels of cyclic nucleotides. Hum. Reprod. 6, 411–422.
| 1659586PubMed |

Tsafriri, A., Chun, S. Y., Zhang, R., Hsueh, A. J., and Conti, M. (1996). Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev. Biol. 178, 393–402.
Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVCksr0%3D&md5=52d171b7e08c1dcf1f9d415111547101CAS | 8812137PubMed |

Vaccari, S., Weeks, J. L., 2nd, Hsieh, M., Menniti, F. S., and Conti, M. (2009). Cyclic GMP signalling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes. Biol. Reprod. 81, 595–604.
Cyclic GMP signalling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7zE&md5=a14d0f52f4ede361779379cfeab5fd7fCAS | 19474061PubMed |

Vanderhyden, B. C., Caron, P. J., Buccione, R., and Eppig, J. J. (1990). Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Dev. Biol. 140, 307–317.
Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czitlersw%3D%3D&md5=46969fc0564b905d45794c8dc733522dCAS | 2115479PubMed |

Vanderhyden, B. C., Telfer, E. E., and Eppig, J. J. (1992). Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol. Reprod. 46, 1196–1204.
Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s%2Fgtlyrsw%3D%3D&md5=8f362a2b01e27c4af223510d82a740ebCAS | 1391318PubMed |

Vanderhyden, B. C., Cohen, J. N., and Morley, P. (1993). Mouse oocytes regulate granulosa cell steroidogenesis. Endocrinology 133, 423–426.
Mouse oocytes regulate granulosa cell steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFagsLY%3D&md5=ca5667eca62eeaa42c267356b8d8eb72CAS | 8319589PubMed |

Vivarelli, E., Conti, M., De Felici, M., and Siracusa, G. (1983). Meiotic resumption and intracellular cAMP levels in mouse oocytes treated with compounds which act on cAMP metabolism. Cell Differ. 12, 271–276.
Meiotic resumption and intracellular cAMP levels in mouse oocytes treated with compounds which act on cAMP metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksVygsb8%3D&md5=d26a4909b65111adabd5bb806f79904dCAS | 6189621PubMed |

Yeo, C. X., Gilchrist, R. B., Thompson, J. G., and Lane, M. (2008). Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum. Reprod. 23, 67–73.
Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgsbzF&md5=fa43e3af92c5ca89065dd0fd2db44607CAS | 17933754PubMed |

Yeo, C. X., Gilchrist, R. B., and Lane, M. (2009). Disruption of bidirectional oocyte–cumulus paracrine signalling during in vitro maturation reduces subsequent mouse oocyte developmental competence. Biol. Reprod. 80, 1072–1080.
Disruption of bidirectional oocyte–cumulus paracrine signalling during in vitro maturation reduces subsequent mouse oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVajs70%3D&md5=95db243e58b587c1222e8e135bd9f4f7CAS | 19144958PubMed |

Yoshino, O., McMahon, H. E., Sharma, S., and Shimasaki, S. (2006). A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proc. Natl. Acad. Sci. USA 103, 10 678–10 683.
A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFWmsL0%3D&md5=f6ee1197a8209fd67e09f8344e75e82cCAS |