Establishing reference genes for use in real-time quantitative PCR analysis of early equine embryos
Damien B. B. P. Paris A E F , Ewart W. Kuijk B C , Bernard A. J. Roelen A D and Tom A. E. Stout A DA Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584 CM, Utrecht, The Netherlands.
B Department of Reproductive Medicine and Gynaecology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
C Hubrecht Institute-KNAW, Upsalalaan 8, 3584 CT, Utrecht, The Netherlands.
D Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands.
E Present address: School of Veterinary and Biomedical Science, James Cook University, Solander Drive, Townsville, Qld 4814, Australia.
F Corresponding author. Email: damien.paris@jcu.edu.au
Reproduction, Fertility and Development 23(2) 353-363 https://doi.org/10.1071/RD10039
Submitted: 3 March 2010 Accepted: 14 August 2010 Published: 4 January 2011
Abstract
Real-time quantitative PCR (qPCR) is invaluable for investigating changes in gene expression during early development, since it can be performed on the limited quantities of mRNA contained in individual embryos. However, the reliability of this method depends on the use of validated stably expressed reference genes for accurate data normalisation. The aim of the present study was to identify and validate a set of reference genes suitable for studying gene expression during equine embryo development. The stable expression of four carefully selected reference genes and one developmentally regulated gene was examined by qPCR in equine in vivo embryos from morula to expanded blastocyst stage. SRP14, RPL4 and PGK1 were identified by geNorm analysis as stably expressed reference genes suitable for data normalisation. RPL13A expression was less stable and changed significantly during the period of development examined, rendering it unsuitable as a reference gene. As anticipated, CDX2 expression increased significantly during embryo development, supporting its possible role in trophectoderm specification in the horse. In summary, it was demonstrated that evidence-based selection of potential reference genes can reduce the number needed to validate stable expression in an experimental system; this is particularly useful when dealing with tissues that yield small amounts of mRNA. SRP14, RPL4 and PGK1 are stable reference genes suitable for normalising expression for genes of interest during in vivo morula to expanded blastocyst development of horse embryos.
Additional keywords: blastocyst, CDX2, horse, housekeeping/control genes, morula, PGK1, qPCR, RPL13A, RPL4, SRP14.
References
Allen, W. R. (2005). The development and application of the modern reproductive technologies to horse breeding. Reprod. Domest. Anim. 40, 310–329.| The development and application of the modern reproductive technologies to horse breeding.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mzls1Kqug%3D%3D&md5=1aee6f7f294f14e22d60f84500da166eCAS | 16008761PubMed |
Ball, B. A. (1988). Embryonic loss in mares. Incidence, possible causes, and diagnostic considerations. Vet. Clin. North Am. Equine Pract. 4, 263–290..
| 1:STN:280:DyaL1czhtVGmtg%3D%3D&md5=b2b3d0fdab5919d0aa892c1beb973377CAS | 3044540PubMed |
Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920.
| The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvgslCgsA%3D%3D&md5=32e6969e7cbbb1ac5c0ad99e9dd965fcCAS | 10937989PubMed |
Battut, I., Colchen, S., Fieni, F., Tainturier, D., and Bruyas, J. (1997). Success rates when attempting to nonsurgically collect equine embryos at 144, 156 or 168 hours after ovulation. Equine Vet. J. Suppl. 25, 60–62..
| 9593530PubMed |
Betteridge, K. J. (2007). Equine embryology: an inventory of unanswered questions. Theriogenology 68, S9–S21.
| Equine embryology: an inventory of unanswered questions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaiurc%3D&md5=411969f9da90e6428321b7d63509e11dCAS | 17532037PubMed |
Betteridge, K. J., Eaglesome, M. D., Mitchell, D., Flood, P. F., and Beriault, R. (1982). Development of horse embryos up to twenty-two days after ovulation: observations on fresh specimens. J. Anat. 135, 191–209..
| 1:STN:280:DyaL3s%2FjtVGnsg%3D%3D&md5=a76a31c3e7989ee066694ce4964527b2CAS | 7130052PubMed |
Brinsko, S. P., Ball, B. A., Ignotz, G. G., Thomas, P. G. A., Currie, W. B., and Ellington, J. E. (1995). Initiation of transcription and nucleologenesis in equine embryos. Mol. Reprod. Dev. 42, 298–302.
| Initiation of transcription and nucleologenesis in equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFykur0%3D&md5=6f7b5f8fc96bbafa5f7e0dcb112c5aabCAS | 8579843PubMed |
Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT–PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39.
| Quantification of mRNA using real-time reverse transcription PCR (RT–PCR): trends and problems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFOhu7s%3D&md5=f02ea7aa49170d27598ee43dea6082caCAS | 12200227PubMed |
de Jonge, H. J. M., Fehrmann, R. S. N., de Bont, E. S. J. M., Hofstra, R. M. W., Gerbens, F., Kamps, W. A., de Vries, E. G. E., van der Zee, A. G. J., te Meerman, G. J., and ter Elst, A. (2007). Evidence-based selection of housekeeping genes. PLoS ONE 2, e898.
| Evidence-based selection of housekeeping genes.Crossref | GoogleScholarGoogle Scholar | 17878933PubMed |
de Mestre, A. M., Miller, D., Roberson, M. S., Liford, J., Chizmar, L. C., McLaughlin, K. E., and Antczak, D. F. (2009). Glial cells missing homologue 1 is induced in differentiating equine chorionic girdle trophoblast cells. Biol. Reprod. 80, 227–234.
| Glial cells missing homologue 1 is induced in differentiating equine chorionic girdle trophoblast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOitL8%3D&md5=12fc3804af50d12167c27c9a56ad2d5fCAS | 18971425PubMed |
Dheda, K., Huggett, J. F., Chang, J. S., Kim, L. U., Bustin, S. A., Johnson, M. A., Rook, G. A. W., and Zumla, A. (2005). The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal. Biochem. 344, 141–143.
| The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1amt70%3D&md5=953fdd80a4c721ca2bc618409e4ec9aaCAS | 16054107PubMed |
Dresios, J., Panopoulos, P., and Synetos, D. (2006). Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol. Microbiol. 59, 1651–1663.
| Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjslakur4%3D&md5=ac7a99a446b3675cc7be978e5cf98eefCAS | 16553873PubMed |
Goossens, K., Van Poucke, M., Van Soom, A., Vandesompele, J., Van Zeveren, A., and Peelman, L. (2005). Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev. Biol. 5, 27.
| Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 16324220PubMed |
Grøndahl, C., and Hyttel, P. (1996). Nucleologenesis and ribonucleic acid synthesis in preimplantation equine embryos. Biol. Reprod. 55, 769–774.
| Nucleologenesis and ribonucleic acid synthesis in preimplantation equine embryos.Crossref | GoogleScholarGoogle Scholar | 8879488PubMed |
Hamatani, T., Carter, M. G., Sharov, A. A., and Ko, M. S. H. (2004). Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131.
| Dynamics of global gene expression changes during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlaktA%3D%3D&md5=b29f6c6166456530046857eb35f14c3cCAS | 14723852PubMed |
Harvey, A. J., Armant, D. R., Bavister, B. D., Nichols, S. M., and Brenner, C. A. (2009). Inner cell mass localization of NANOG precedes OCT3/4 in rhesus monkey blastocysts. Stem Cells Dev. 18, 1451–1458.
| Inner cell mass localization of NANOG precedes OCT3/4 in rhesus monkey blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWitg%3D%3D&md5=6edfd1464f15cb9b4b54efdd29eb4be2CAS | 19537945PubMed |
Jolly, R. A., Goldstein, K. M., Wei, T., Gao, H., Chen, P., Huang, S., Colet, J.-M., Ryan, T. P., Thomas, C. E., and Estrem, S. T. (2005). Pooling samples within microarray studies: a comparative analysis of rat liver transcription response to prototypical toxicants. Physiol. Genomics 22, 346–355.
| Pooling samples within microarray studies: a comparative analysis of rat liver transcription response to prototypical toxicants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFOlsbY%3D&md5=e455fd15d196eb651bd215caf8af630bCAS | 15914576PubMed |
Kuijk, E. W., du Puy, L., van Tol, H. T. A., Haagsman, H. P., Colenbrander, B., and Roelen, B. A. J. (2007). Validation of reference genes for quantitative RT–PCR studies in porcine oocytes and preimplantation embryos. BMC Dev. Biol. 7, 58.
| Validation of reference genes for quantitative RT–PCR studies in porcine oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 17540017PubMed |
Kuijk, E. W., du Puy, L., van Tol, H. T. A., Oei, C. H. Y., Haagsman, H. P., Colenbrander, B., and Roelen, B. A. J. (2008). Differences in early lineage segregation between mammals. Dev. Dyn. 237, 918–927.
| Differences in early lineage segregation between mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFaktbY%3D&md5=ec9af44ae6aa3aac8a43da8cf83b927aCAS | 18330925PubMed |
Li, X., Zhou, S. G., Imreh, M. P., Ahrlund-Richter, L., and Allen, W. R. (2006). Horse embryonic stem cell lines from the proliferation of inner cell mass cells. Stem Cells Dev. 15, 523–531.
| Horse embryonic stem cell lines from the proliferation of inner cell mass cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFOkurk%3D&md5=83a26316142d4459d201bd8b70f49c79CAS | 16978056PubMed |
Mamo, S., Gal, A., Bodo, S., and Dinnyes, A. (2007). Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev. Biol. 7, 14.
| Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 17341302PubMed |
Mamo, S., Gal, A., Polgar, Z., and Dinnyes, A. (2008). Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos. BMC Mol. Biol. 9, 67.
| Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos.Crossref | GoogleScholarGoogle Scholar | 18662377PubMed |
Marshall, O. J. (2004). PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20, 2471–2472.
| PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Gisrc%3D&md5=3aca0a8fb2997e3cb15a1fee25daed51CAS | 15073005PubMed |
Morris, L. H. A., and Allen, W. R. (2002). Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket. Equine Vet. J. 34, 51–60.
| Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fptlequg%3D%3D&md5=729a2ba23f76130347951ed75628b32fCAS | 11822372PubMed |
Nelissen, K., Smeets, K., Mulder, M., Hendriks, J. J. A., and Ameloot, M. (2010). Selection of reference genes for gene expression studies in rat oligodendrocytes using quantitative real-time PCR. J. Neurosci. Methods 187, 78–83.
| Selection of reference genes for gene expression studies in rat oligodendrocytes using quantitative real-time PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1altL0%3D&md5=7d12597d2d0d4f5e53564d2f471c3c66CAS | 20036692PubMed |
Nygard, A.-B., Jorgensen, C., Cirera, S., and Fredholm, M. (2007). Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol. Biol. 8, 67.
| Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR.Crossref | GoogleScholarGoogle Scholar | 17697375PubMed |
Pilbrow, A. P., Ellmers, L. J., Black, M. A., Moravec, C. S., Sweet, W. E., Troughton, R. W., Richards, A. M., Frampton, C. M., and Cameron, V. A. (2008). Genomic selection of reference genes for real-time PCR in human myocardium. BMC Med. Genomics 1, 64.
| Genomic selection of reference genes for real-time PCR in human myocardium.Crossref | GoogleScholarGoogle Scholar | 19114010PubMed |
Quinn, G. P., and Keough, M. J. (2002). ‘Experimental Design and Data Analysis for Biologists.’ 1st edn. (Cambridge University Press: Cambridge.)
Ralston, A., and Rossant, J. (2005). Genetic regulation of stem cell origins in the mouse embryo. Clin. Genet. 68, 106–112.
| Genetic regulation of stem cell origins in the mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzksVymsw%3D%3D&md5=a753a38bab7572e3800e6dbb27452c9aCAS | 15996204PubMed |
Rambags, B. P. B., Krijtenburg, P. J., Van Drie, H. F., Lazzari, G., Galli, C., Pearson, P. L., Colenbrander, B., and Stout, T. A. E. (2005). Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro. Mol. Reprod. Dev. 72, 77–87.
| Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlClsL4%3D&md5=7e40fc76ff7476771c529eb6d270f03eCAS | 15948165PubMed |
Rambags, B. P. B., van Tol, H. T. A., van den Eng, M. M., Colenbrander, B., and Stout, T. A. E. (2008). Expression of progesterone and oestrogen receptors by early intrauterine equine conceptuses. Theriogenology 69, 366–375.
| Expression of progesterone and oestrogen receptors by early intrauterine equine conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvV2hsA%3D%3D&md5=ea2b9c139eacac2acbcf61fe7f28a545CAS | 18037481PubMed |
Robert, C. (2010). Microarray analysis of gene expression during early development: a cautionary overview. Reproduction , .
| Microarray analysis of gene expression during early development: a cautionary overview.Crossref | GoogleScholarGoogle Scholar |
Saito, S., Ugai, H., Sawai, K., Yamamoto, Y., Minamihashi, A., Kurosaka, K., Kobayashi, Y., Murata, T., Obata, Y., and Yokoyama, K. (2002). Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett. 531, 389–396.
| Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFCks7o%3D&md5=6b150c583aa98c4423a89aa15788f8a9CAS | 12435581PubMed |
Slade, N. P., Takeda, T., Squires, E. L., Elsden, R. P., and Seidel, G. E. (1985). A new procedure for the cryopreservation of equine embryos. Theriogenology 24, 45–58.
| A new procedure for the cryopreservation of equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVyhtw%3D%3D&md5=69e76ddb31b01a670fb94fd090dd9ae6CAS | 16726058PubMed |
Smits, K., Goossens, K., Van Soom, A., Govaere, J., Hoogewijs, M., Vanhaesebrouck, E., Galli, C., Colleoni, S., Vandesompele, J., and Peelman, L. (2009). Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen–thawed in vitro blastocysts. BMC Res. Notes 2, 246.
| Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen–thawed in vitro blastocysts.Crossref | GoogleScholarGoogle Scholar | 20003356PubMed |
Stout, T. A. E. (2006). Equine embryo transfer: review of developing potential. Equine Vet. J. 38, 467–478.
| Equine embryo transfer: review of developing potential.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28rmtFWktw%3D%3D&md5=b8369ddf995eb1f17f040b9f960da98eCAS | 16986609PubMed |
Stout, T. A. E., Meadows, S., and Allen, W. R. (2005). Stage-specific formation of the equine blastocyst capsule is instrumental to hatching and to embryonic survival in vivo. Anim. Reprod. Sci. 87, 269–281.
| Stage-specific formation of the equine blastocyst capsule is instrumental to hatching and to embryonic survival in vivo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3mvVWitQ%3D%3D&md5=3fea41ddf6ccc1981d6a92d87b2eda74CAS | 15911176PubMed |
Strumpf, D., Mao, C.-A., Yamanaka, Y., Ralston, A., Chawengsaksophak, K., Beck, F., and Rossant, J. (2005). Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102.
| Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFagsbs%3D&md5=3dd31832c98b5a1f02edc18f43a20668CAS | 15788452PubMed |
Takagi, S., Ohashi, K., Utoh, R., Tatsumi, K., Shima, M., and Okano, T. (2008). Suitable reference genes for the analysis of direct hyperplasia in mice. Biochem. Biophys. Res. Commun. 377, 1259–1264.
| Suitable reference genes for the analysis of direct hyperplasia in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGhu7vF&md5=d7282dac1d4a09c501e9f69ed89bfdc1CAS | 18983821PubMed |
Telford, N. A., Watson, A. J., and Schultz, G. A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90–100.
| Transition from maternal to embryonic control in early mammalian development: a comparison of several species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3mslOhtQ%3D%3D&md5=9fba85bb0339b45b5570cc49f8f79f96CAS | 2189447PubMed |
Tharasanit, T., Colenbrander, B., and Stout, T. A. E. (2005). Effect of cryopreservation on the cellular integrity of equine embryos. Reproduction 129, 789–798.
| Effect of cryopreservation on the cellular integrity of equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFGit7s%3D&md5=8fc9c926c1103250d47368dcc2a561bcCAS | 15923394PubMed |
Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., Grisar, T., Igout, A., and Heinen, E. (1999). Housekeeping genes as internal standards: use and limits. J. Biotechnol. 75, 291–295.
| Housekeeping genes as internal standards: use and limits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFajt74%3D&md5=9a7305a4c4d52d43d2ca0777c688610dCAS | 10617337PubMed |
Tremoleda, J. L., Stout, T. A. E., Lagutina, I., Lazzari, G., Bevers, M. M., Colenbrander, B., and Galli, C. (2003). Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics and blastocyst capsule formation. Biol. Reprod. 69, 1895–1906.
| Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics and blastocyst capsule formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCns7k%3D&md5=099ca974c068499e2c1fea9ae9104963CAS | 12904313PubMed |
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1–research0034.11.
| Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes.Crossref | GoogleScholarGoogle Scholar |
Warner, J. R., and McIntosh, K. B. (2009). How common are extraribosomal functions of ribosomal proteins? Mol. Cell 34, 3–11.
| How common are extraribosomal functions of ribosomal proteins?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Srs7k%3D&md5=ce50b82462a8d7b35ca6003caeb8e870CAS | 19362532PubMed |
Willems, E., Mateizel, I., Kemp, C., Cauffman, G., Sermon, K., and Leyns, L. (2006). Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. Int. J. Dev. Biol. 50, 627–635.
| Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2hur%2FE&md5=28a6fa699958ce4bc33fea8781fad26bCAS | 16892176PubMed |