Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Anti-Müllerian hormone: a predictive marker of embryo production in cattle?

Danielle Monniaux A D , Sarah Barbey B , Charlène Rico A , Stéphane Fabre A , Yves Gallard B and Hélène Larroque C
+ Author Affiliations
- Author Affiliations

A Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, Centre INRA de Tours, 37380 Nouzilly, France.

B UE 326 Unité Expérimentale du Pin, INRA Le Pin, 61310 Exmes, France.

C INRA UMR 1313 Génétique Animale et Biologie Intégrative, 78352 Jouy-en-Josas Cedex, France.

D Corresponding author. Email: dmonniaux@tours.inra.fr

Reproduction, Fertility and Development 22(7) 1083-1091 https://doi.org/10.1071/RD09279
Submitted: 16 November 2009  Accepted: 17 February 2010   Published: 20 August 2010

Abstract

In cattle, the embryo production rate after superovulation varies between individuals and is difficult to predict. Recently, we proposed that anti-Müllerian hormone (AMH) plasma levels measured before treatment can help predict superovulatory responses. To establish whether blood measurement of AMH can help predict the number of embryos produced by a given cow after superovulation, data collected over 4 years from 45 dairy cows submitted to repeated embryo production were analysed in a retrospective study. A high within-animal repeatability (0.38 and 0.36) and a strong effect of the father of the donor cow (P < 0.01) were observed for the numbers of collected and transferable embryos, respectively. AMH concentration, measured in the plasma of donor cows during first lactation and several months before the start of the embryo production campaigns, was found to be highly correlated with the maximal number of collected (P < 0.0001) and transferable (P < 0.01) embryos per cow. In conclusion, the capacity of embryo production is a repeatable and probably heritable trait in the cow, and blood measurement of AMH in potential donor cows could be of value in determining a cow’s intrinsic capacity to produce transferable embryos.

Additional keywords: assisted reproductive technology, bovine species, FSH, ovulation.


Acknowledgements

The authors thank the staff of the dairy Experimental Unit UE 326 for animal management and participation in the experimental design, Christèle Robert-Granié for her help with the statistical analyses and John Williams for linguistic revision of the manuscript. This work was supported by special funding ‘Crédits Incitatifs’ of the INRA PHASE Department.


References

Adams, T. E. , and Boime, I. (2008). The expanding role of recombinant gonadotropins in assisted reproduction. Reprod. Domest. Anim. 43(Suppl. 2), 186–192.
Crossref | GoogleScholarGoogle Scholar | PubMed | Eriksson S., Häggström M., and Stalhammar H. (2007). Genetic parameters for superovulatory response in Swedish red cattle and Swedish Holstein heifers. In ‘58th Annual Meeting of the European Association for Animal Production, Dublin’. pp. 1–6. (Wageningen Academic Publishers: Wageningen, The Netherlands.)

Fanchin, R. , Mendez Lozano, D. H. , Louafi, N. , Achour-Frydman, N. , Frydman, R. , and Taieb, J. (2005). Dynamics of serum anti-Mullerian hormone levels during the luteal phase of controlled ovarian hyperstimulation. Hum. Reprod. 20, 747–751.
Crossref | GoogleScholarGoogle Scholar | PubMed | Jarrige R. (1989). ‘Ruminant Nutrition. Recommended Allowances and Feed Tables. INRA: Institut National de la Recherche Agronomique.’ (John Libbey Eurotext: Montrouge.)

Jewgenow, K. , Heerdegen, B. , and Müller, K. (1999). In vitro development of individually matured bovine oocytes in relation to follicular wall atresia. Theriogenology 51, 745–756.
Crossref | GoogleScholarGoogle Scholar | PubMed | Larroque H., Gallard Y., Thaunat L., Boichard D., and Colleau J. J. (2002). A crossbreeding experiment to detect quantitative trait loci in dairy cattle. In ‘Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002’. pp. 1–4. (Institut National de la Recherche Agronomique (INRA): Montpellier, France.)

Lindner, G. M. , and Wright, R. W. (1983). Bovine embryo morphology and evaluation. Theriogenology 20, 407–416.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lonergan, P. (2007). State-of-the-art embryo technologies in cattle. Soc. Reprod. Fertil. Suppl. 64, 315–325.
PubMed |

Mapletoft, R. J. , and Hasler, J. F. (2005). Assisted reproductive technologies in cattle: a review. Rev. Sci. Tech. 24, 393–403.
PubMed |

Mapletoft, R. J. , Steward, K. B. , and Adams, G. P. (2002). Recent advances in the superovulation in cattle. Reprod. Nutr. Dev. 42, 601–611.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mermillod, P. , Dalbiès-Tran, R. , Uzbekova, S. , Thélie, A. , Traverso, J. M. , Perreau, C. , Papillier, P. , and Monget, P. (2008). Factors affecting oocyte quality: who is driving the follicle? Reprod. Domest. Anim. 43(Suppl. 2), 393–400.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Monniaux, D. , Chupin, D. , and Saumande, J. (1983). Superovulatory responses of cattle. Theriogenology 19, 55–81.
Crossref | GoogleScholarGoogle Scholar |

Monniaux, D. , di Clemente, N. , Touzé, J. L. , Belville, C. , Rico, C. , Bontoux, M. , Picard, J. Y. , and Fabre, S. (2008). Intrafollicular steroids and anti-mullerian hormone during normal and cystic ovarian follicular development in the cow. Biol. Reprod. 79, 387–396.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nasser, L. F. , Adams, G. P. , Bo, G. A. , and Mapletoft, R. J. (1993). Ovarian superstimulatory response relative to follicular wave emergence in heifers. Theriogenology 40, 713–724.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nicholas, B. , Alberio, R. , Fouladi-Nashta, A. A. , and Webb, R. (2005). Relationship between low-molecular-weight insulin-like growth factor-binding proteins, caspase-3 activity, and oocyte quality. Biol. Reprod. 72, 796–804.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Peixoto, M. G. C. D. , Pereira, C. S. , Bergmann, J. A. G. , Penna, V. M. , and Fonseca, C. G. (2004). Genetic parameters of multiple ovulation traits in Nellore females. Theriogenology 62, 1459–1464.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rico, C. , Fabre, S. , Médigue, C. , di Clemente, N. , and Clément, F. , et al. (2009). Anti-Müllerian hormone is an endocrine marker of ovarian gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow. Biol. Reprod. 80, 50–59.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Roxström, A. , Strandberg, E. , Berglund, B. , Emanuelson, U. , and Philipsson, J. (2001a). Genetic and environmental correlations among female fertility traits and milk production in different parities of Swedish red and white dairy cattle. Acta Agric. Scand. A Anim. Sci. 51, 7–14.
Crossref | GoogleScholarGoogle Scholar |

Roxström, A. , Strandberg, E. , Berglund, B. , Emanuelson, U. , and Philipsson, J. (2001b). Genetic and environmental correlations among female fertility traits, and between the ability to show oestrus and milk production in dairy cattle. Acta Agric. Scand. A Anim. Sci. 51, 192–199.
Crossref | GoogleScholarGoogle Scholar |

Santos, J. E. , Cerri, R. L. , and Sartori, R. (2008). Nutritional management of the donor cow. Theriogenology 69, 88–97.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Singh, J. , Dominguez, M. , Jaiswal, R. , and Adams, G. P. (2004). A simple ultrasound test to predict the superstimulatory response in cattle. Theriogenology 62, 227–243.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sirard, M. A. , Richard, F. , Blondin, P. , and Robert, C. (2006). Contribution of the oocyte to embryo quality. Theriogenology 65, 126–136.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Streuli, I. , Fraisse, T. , Pillet, C. , Ibecheole, V. , Bischof, P. , and de Ziegler, D. (2008). Serum antimullerian hormone levels remain stable throughout the menstrual cycle and after oral or vaginal administration of synthetic sex steroids. Fertil. Steril. 90, 395–400.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takahashi, M. , Hayashi, M. , Manganaro, T. F. , and Donahoe, P. K. (1986). The ontogeny of Mullerian inhibiting substance in granulosa cells of the bovine ovarian follicle. Biol. Reprod. 35, 447–453.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tonhati, H. , Lobo, R. B. , and Oliveira, H. N. (1999). Repeatability and heritability of response to superovulation in Holstein cows. Theriogenology 51, 1151–1156.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tsepelidis, S. , Devreker, F. , Demeestere, I. , Flahaut, A. , Gervy, C. , and Englert, Y. (2007). Stable serum levels of anti-Mullerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. Hum. Reprod. 22, 1837–1840.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Velazquez, M. A. , Newman, M. , Christie, M. F. , Cripps, P. J. , Crowe, M. A. , Smith, R. F. , and Dobson, H. (2005). The usefulness of a single measurement of insulin-like growth factor-1 as a predictor of embryo yield and pregnancy rates in a bovine MOET program. Theriogenology 64, 1977–1994.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vigier, B. , Picard, J. Y. , Tran, D. , Legeai, L. , and Josso, N. (1984). Production of anti-Mullerian hormone: another homology between Sertoli and granulosa cells. Endocrinology 114, 1315–1320.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Visser, J. A. , de Jong, F. H. , Laven, J. S. , and Themmen, A. P. (2006). Anti-Mullerian hormone: a new marker for ovarian function. Reproduction 131, 1–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Weenen, C. , Laven, J. S. , Von Bergh, A. R. , Cranfield, M. , Groome, N. P. , Visser, J. A. , Kramer, P. , Fauser, B. C. , and Themmen, A. P. (2004). Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol. Hum. Reprod. 10, 77–83.
Crossref | GoogleScholarGoogle Scholar | PubMed |