Embryo biotechnology in the dog: a review
Sylvie Chastant-Maillard A B C E , Martine Chebrout B C , Sandra Thoumire B C , Marie Saint-Dizier B C D , Marc Chodkiewicz A B and Karine Reynaud B CA Department of Reproduction, Ecole Nationale Vétérinaire d’Alfort, 7 Avenue du Général De Gaulle, 94700 Maisons-Alfort, France.
B ENVA, UMR 1198 Biologie du Développement et Reproduction, 7 Avenue du Général De Gaulle, 94700 Maisons-Alfort, France.
C INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France.
D Genetic Breeding and Reproduction, AgroParisTech, 16 Rue Claude Bernard, 75005 Paris, France.
E Corresponding author. Email: schastant@vet-alfort.fr
Reproduction, Fertility and Development 22(7) 1049-1056 https://doi.org/10.1071/RD09270
Submitted: 4 November 2009 Accepted: 3 March 2010 Published: 20 August 2010
Abstract
Canine embryos are a scarce biological material because of difficulties in collecting in vivo-produced embryos and the inability, to date, to produce canine embryos in vitro. The procedure for the transfer of in vivo-produced embryos has not been developed adequately, with only six attempts reported in the literature that have resulted in the birth of 45 puppies. In vitro, the fertilisation rate is particularly low (∼10%) and the incidence of polyspermy particularly high. So far, no puppy has been obtained from an in vitro-produced embryo. In contrast, cloning of somatic cells has been used successfully over the past 4 years, with the birth of 41 puppies reported in the literature, a yield that is comparable to that for other mammalian species. Over the same period, canine embryonic stem sells and transgenic cloned dogs have been obtained. Thus, the latest reproductive technologies are further advanced than in vitro embryo production. The lack of fundamental studies on the specific features of reproductive physiology and developmental biology in the canine is regrettable in view of the increasing role of dogs in our society and of the current demand for new biological models in biomedical technology.
Additional keywords: biology, development, fertilisation, in vitro, in vivo, techniques.
Archbald, L. F. , Baker, B. A. , Clooney, L. L. , and Godke, R. A. (1980). A surgical method for collecting canine embryos after induction of estrus and ovulation with exogenous gonadotropins. Vet. Med. Small Anim. Clin. 75, 228–238.
| PubMed |
Chavatte-Palmer, P. , Remy, D. , Cordonnier, N. , Richard, C. , Issenman, H. , Laigre, P. , Heyman, Y. , and Mialot, J. P. (2004). Health status of cloned cattle at different ages. Cloning Stem Cells 6, 94–100.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Galli, C. , Crotti, G. , Notari, C. , Turini, P. , Duchi, R. , and Lazzari, G. (2001). Embryo production by ovum pick up from live donors. Theriogenology 55, 1341–1357.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kirkness, E. F. , Bafna, V. , Halpern, A. L. , Levy, S. , and Remington, K. , et al. (2003). The dog genome: survey sequencing and comparative analysis. Science 301, 1898–1903.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
McNeil, J. , and Constandy, E. (2006). Addressing the problem of pet overpopulation: the experience of New Hanover County Animal Control Services. J. Public Health Manag. Pract. 12, 452–455.
| PubMed |
Murakami, M. , Otoi, T. , Wongsrikeao, P. , Agung, B. , Sambuu, R. , and Suzuki, T. (2005). Development of interspecies cloned embryos in yak and dog. Cloning Stem Cells 7, 77–81.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Nagashima, H. , Kashiwazaki, N. , Ashman, R. J. , Grupen, C. G. , and Nottle, M. B. (1995). Cryopreservation of porcine embryos. Nature 374, 416.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Oh, H. J. , Kim, M. K. , Jang, G. , Kim, H. J. , and Hong, S. G. , et al. (2008). Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 70, 638–647.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Otoi, T. , Murakami, M. , Fujii, M. , Tanaka, M. , Ooka, A. , Une, S. , and Suzuki, T. (2000). Development of canine oocytes matured and fertilised in vitro. Vet. Rec. 146, 52–53.
| PubMed |
Park, J. E. , Hong, S. G. , Kang, J. T. , Oh, H. J. , Kim, M. K. , Kim, M. J. , Kim, H. J. , Kim, D. Y. , Jang, G. , and Lee, B. C. (2009). Birth of viable puppies derived from breeding cloned female dogs with a cloned male. Theriogenology 72, 721–730.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Purswell, B. J. , and Kolster, K. A. (2006). Immunocontraception in companion animals. Theriogenology 66, 510–513.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Reynaud, K. , Fontbonne, A. , Marseloo, N. , Thoumire, S. , Chebrout, M. , Viaris de Lesegno, C. , and Chastant-Maillard, S. (2005). In vivo meiotic resumption, fertilization and early embryonic development in the bitch. Reproduction 130, 193–201.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Reynaud, K. , Fontbonne, A. , Marseloo, N. , Viaris de Lesegno, C. , Saint-Dizier, M. , and Chastant-Maillard, S. (2006). In vivo canine oocyte maturation, fertilization and early embryogenesis: a review. Theriogenology 66, 1685–1693.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Saint-Dizier, M. , Renard, J. P. , and Chastant-Maillard, S. (2001). Induction of final maturation by sperm penetration in canine oocytes. Reproduction 121, 97–105.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sampaolesi, M. , Blot, S. , D’Antona, G. , Granger, N. , and Tonlorenzi, R. , et al. (2006). Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444, 574–579.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sarasa, M. , and Pesini, P. (2009). Natural non-transgenic animal models for research in Alzheimer’s disease. Curr. Alzheimer Res. 6, 171–178.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Scherzer, J. , Fayrer-Hosken, R. A. , Ray, L. , Hurley, D. J. , and Heusner, G. L. (2008). Advancements in large animal embryo transfer and related biotechnologies. Reprod. Domest. Anim. 43, 371–376.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Schneider, M. R. , Adler, H. , Braun, J. , Kienzle, B. , Wolf, E. , and Kolb, H. J. (2007). Canine embryo-derived stem cells: toward clinically relevant animal models for evaluating efficacy and safety of cell therapies. Stem Cells 25, 1850–1851.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Schneider, M. R. , Wolf, E. , Braun, J. , Kolb, H. J. , and Adler, H. (2008). Canine embryo-derived stem cells and models for human diseases. Hum. Mol. Genet. 17, R42–R47.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Shimizu, T. , Tsutsui, T. , Murao, I. , and Orima, H. (1990). Incidence for transuterine migration of embryos in the dog. Jpn J. Vet. Sci. 52, 1273–1275.
Smith, L. C. , and Murphy, B. D. (2004). Genetic and epigenetic aspects of cloning and potential effects on offspring of cloned mammals. Cloning Stem Cells 6, 126–132.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Somfai, T. , Ozawa, M. , Noguchi, J. , Kaneko, H. , Nakai, M. , Maedomari, N. , Ito, J. , Kashiwazaki, N. , Nagai, T. , and Kikuchi, K. (2009). Live piglets derived from in vitro-produced zygotes vitrified at the pronuclear stage. Biol. Reprod. 80, 42–49.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Songsasen, N. , and Wildt, D. E. (2007). Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog. Anim. Reprod. Sci. 98, 2–22.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sugimura, S. , Narita, K. , Yamashiro, H. , Sugawara, A. , Shoji, T. , Terashita, Y. , Nishimori, K. , Konno, T. , Yoshida, M. , and Sato, E. (2009). Interspecies somatic cell nucleus transfer with porcine oocytes as recipient: a novel bioassay system for assessing the competence of canine somatic cells to develop into embryos. Theriogenology 72, 549–559.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Tecirlioglu, R. T. , Guo, J. , and Trounson, A. O. (2006). Interspecies somatic cell nuclear transfer and preliminary data for horse–cow/mouse iSCNT. Stem Cell Rev. 2, 277–287.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Tsutsui, T. (1975). Ovulation rate and transuterine migration of fertilized ova. Jpn. J. Anim. Reprod. 21, 98–101.
Tsutsui, T. (1989). Gamete physiology and timing of ovulation and fertilization in dogs. J. Reprod. Fertil. Suppl. 39, 269–275.
| PubMed |
Tsutsui, T. , and Ejima, H. (1988). Experimental indiuction of superfecundation in the dog. Jpn J. Vet. Sci. 50, 581–583.
Tsutsui, T. , Shimada, K. , Nishi, M. , Kubo, N. , Murao, I. , Shimizu, T. , and Ogasa, A. (1989). An experimental trial on embryo transfer in the dog. Jpn J. Vet. Sci. 51, 797–800.
Tsutsui, T. , Hori, T. , and Kawakami, E. (2001a). Intratubal transplantation of early canine embryos. J. Reprod. Fertil. Suppl. 57, 309–314.
| PubMed |
Tsutsui, T. , Hori, T. , Okazaki, H. , Tanaka, A. , Shiono, M. , Yokosuka, M. , and Kawakami, E. (2001b). Transfer of canine embryos at various developmental stages recovered by hysterectomy or surgical uterine flushing. J. Vet. Med. Sci. 63, 401–405.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Tsutsui, T. , Hori, T. , Endo, S. , Hayama, A. , and Kawakami, E. (2006). Intrauterine transfer of early canine embryos. Theriogenology 66, 1703–1705.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Vaags, A. K. , Rosic-Kablar, S. , Gartley, C. J. , Zheng, Y. Z. , Chesney, A. , Villagómez, D. A. , Kruth, S. A. , and Hough, M. R. (2009). Derivation and characterization of canine embryonic stem cell lines with in vitro and in vivo differentiation potential. Stem Cells 27, 329–340.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Vajta, G. , Holm, P. , Kuwayama, M. , Booth, P. J. , Jacobsen, H. , Greve, T. , and Callesen, H. (1998). Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev. 51, 53–58.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Van der Stricht, O. (1923). Etude comparée des ovules de mammifères aux différentes périodes de l’ovogenèse. Arch. Biol. 33, 229–300.
Viaris de Lesegno, C. , Reynaud, K. , Longin, C. , Thoumire, S. , and Chastant-Maillard, S. (2008). Ultrastructural evaluation of in vitro-matured canine oocytes. Reprod. Fertil. Dev. 20, 626–639.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Westhusin, M. E. , Burghardt, R. C. , Ruglia, J. N. , Willingham, L. A. , Liu, L. , Shin, T. , Howe, L. M. , and Kraemer, D. C. (2001). Potential for cloning dogs. J. Reprod. Fertil. Suppl. 57, 287–293.
| PubMed |
Westhusin, M. , Hinrichs, K. , Choi, Y. H. , Shin, T. , Liu, L. , and Kraemer, D. (2003). Cloning companion animals (horses, cats and dogs). Cloning Stem Cells 5, 301–317.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wilcox, J. T. , Semple, E. , Gartley, C. , Brisson, B. A. , Perrault, S. D. , Villagómez, D. A. , Tayade, C. , Becker, S. , Lanza, R. , and Betts, D. H. (2009). Characterization of canine embryonic stem cell lines derived from different niche microenvironments. Stem Cells Dev. 18, 1167–1178.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wilmut, I. (2006). Are there any normal clones? Methods Mol. Biol. 348, 307–318.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Yamada, S. , Shimazu, Y. , Kawaji, H. , Nakazawa, M. , Naito, K. , and Toyoda, Y. (1992). Maturation, fertilization, and development of dog oocytes in vitro. Biol. Reprod. 46, 853–858.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Yamada, S. , Shimazu, Y. , Kawano, Y. , Nakazawa, M. , Naito, K. , and Toyoda, Y. (1993). In vitro maturation and fertilization of preovulatory dog oocytes. J. Reprod. Fertil. Suppl. 47, 227–229.
| PubMed |
Young, L. E. , Sinclair, K. D. , and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zawistowski, S. , Morris, J. , Salman, M. D. , and Ruch-Gallie, R. (1998). Population dynamics, overpopulation, and the welfare of companion animals: new insights on old and new data. J. Appl. Anim. Welf. Sci. 1, 193–206.
| Crossref | GoogleScholarGoogle Scholar | PubMed |