Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Developmental potential of bovine oocytes following IVM in the presence of glutathione ethyl ester

E. C. Curnow A B D , J. P. Ryan B C , D. M. Saunders B and E. S. Hayes A
+ Author Affiliations
- Author Affiliations

A Washington National Primate Research Center, University of Washington, Box 357331, Seattle, WA 98195, USA.

B Sydney Medical School, Edward Ford Building, A27, University of Sydney, Sydney, NSW 2006, Australia.

C IVF Australia, 176 Pacific Highway, Greenwich, NSW 2065, Australia.

D Corresponding author. Email: ecur6111@uni.sydney.edu.au

Reproduction, Fertility and Development 22(4) 597-605 https://doi.org/10.1071/RD09228
Submitted: 5 September 2009  Accepted: 28 September 2009   Published: 9 March 2010

Abstract

Glutathione (GSH) is synthesised during oocyte maturation and represents the oocyte’s main non-enzymatic defence against oxidative stress. Inadequate defence against oxidative stress may be related to poor embryo quality and viability. In the present study, bovine oocytes were matured in vitro in the presence of GSH ethyl ester (GSH-OEt), a cell permeable GSH donor, and its effects on subsequent fertilisation and embryo development were assessed. GSH-OEt significantly increased the GSH content of IVM oocytes without affecting fertilisation or Day 3 cleavage rates. Maturation in the presence of GSH-OEt did not significantly increase the blastocyst rate compared with control oocytes. However, 5 mM GSH-OEt treatment resulted in significantly higher blastocyst total cell number. The GSH level of IVM oocytes was significantly decreased in the absence of cumulus cells and when cumulus–oocyte complexes were cultured in the presence of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis. The addition of GSH-OEt to cumulus-denuded or BSO-treated oocytes increased the GSH content of bovine oocytes and restored the rate of normal fertilisation, but not embryo development, to levels seen in control oocytes. Thus, GSH-OEt represents a novel approach for effective in vitro elevation of bovine oocyte GSH and improvement in blastocyst cell number.

Additional keywords: inner cell mass: trophectoderm cell ratio, oxygen tension.


References

Abeydeera, L. R. , Wang, W.-H. , Cantley, T. C. , Prather, R. S. , and Day, B. N. (1999). Glutathione content and embryo development after in vitro fertilisation of pig oocytes matured in the presence of a thiol compound and various concentrations of cysteine. Zygote 7, 203–210.
Crossref | GoogleScholarGoogle Scholar | PubMed | Du F., Looney C. R., and Yang X. (1996). Evaluation of bovine embryos produced in vitro vs. in vivo by differential staining of inner cell mass and trophectoderm cells. Theriogenology 45, 211. [Abstract] doi:10.1016/0093-691X(96)84684-X

Feugang, J.-M. , De Roover, R. , Moens, A. , Léonard, S. , Dessy, F. , and Donnay, I. (2004). Addition of β-mercaptoethanol or Trolox® at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidant agents. Theriogenology 61, 71–90.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Furnus, C. C. , de Matos, D. G. , Picco, S. , Peral García, P. , Inda, A. M. , Mattioli, G. , and Errecalde, A. L. (2008). Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes. Anim. Reprod. Sci. 109, 88–99.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gardiner, C. S. , and Reed, D. J. (1994). Status of glutathione during oxidant-induced oxidative stress in the preimplantation mouse embryo. Biol. Reprod. 51, 1307–1314.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gardiner, C. S. , and Reed, D. J. (1995). Synthesis of glutathione in the preimplantation mouse embryo. Arch. Biochem. Biophys. 318, 30–36.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ge, L. , Sui, H.-S. , Lan, G.-C. , Na Liu, N. , Wang, J.-Z. , and Tan, J.-H. (2008). Coculture with cumulus cells improves maturation of mouse oocytes denuded of the cumulus oophorus: observations of nuclear and cytoplasmic events. Fertil. Steril. 90, 2376–2388.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Geshi, M. , Takenouchi, N. , Yaamauchi, N. , and Nagai, T. (2000). Effects of sodium pyruvate in nonserum maturation medium on maturation, fertilization, and subsequent development of bovine oocytes with or without cumulus cells. Biol. Reprod. 63, 1730–1734.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Goto, Y. , Noda, Y. , Mori, T. , and Nakano, M. (1993). Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic. Biol. Med. 15, 69–75.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Guérin, P. , El Mouatassim, S. , and Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Khurana, N. K. , and Niemann, H. (2000). Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology 54, 741–756.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kitagawa, Y. , Suzuki, K. , Yoneda, A. , and Watanabe, T. (2004). Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 62, 1186–1197.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Knijn, H. M. , Gjørret, J. O. , Vos, P. L. A. M. , Hendriksen, P. J. M. , van der Weijden, B. C. , Maddox-Hytell, P. , and Dieleman, S. J. (2003). Consequences of in vivo development and subsequent culture on apoptosis, cell number, and blastocyst formation in bovine embryos. Biol. Reprod. 69, 1371–1378.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lim, J. M. , Reggio, B. C. , Godke, R. A. , and Hansel, W. (1999). Development of in-vitro-derived bovine embryos cultured in 5% CO2 in air or in 5% O2, 5% CO2 and 90% N2. Hum. Reprod. 14, 458–464.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Luciano, A. M. , Lodde, V. , Beretta, M. S. , Colleoni, S. , Lauria, A. , and Modina, S. (2005). Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus–oocyte complexes: role of cumulus cells, cyclic adenosine 3′,5′-monophosphate, and glutathione. Mol. Reprod. Dev. 71, 389–397.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Maedomari, N. , Kikuchi, K. , Ozawa, M. , Noguchi, M. , Kaneko, H. , Ohnuma, K. , Nakai, M. , Shino, M. , Nagai, T. , and Kashiwazaki, N. (2007). Cytoplasmic glutathione regulated by cumulus cells during porcine oocytes maturation affects fertilization and embryonic development in vitro. Theriogenology 67, 983–993.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Meister, A. (1985). Methods for the selective modification of glutathione metabolism and study of glutathione transport. Methods Enzymol. 113, 571–585.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Meister, A. , and Anderson, M. E. (1983). Glutathione. Annu. Rev. Biochem. 52, 711–760.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mizushima, S. , and Fukui, Y. (2001). Fertilizability and developmental capacity of bovine oocytes cultured individually in a chemically defined maturation medium. Theriogenology 55, 1431–1445.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mori, T. , Amano, T. , and Shimizu, H. (2000). Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biol. Reprod. 62, 913–919.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ozawa, M. , Nagai, T. , Fahrudin, M. , Karja, N. W. K. , Kaneko, H. , Noguchi, J. , Ohnuma, K. , and Kikuchi, K. (2006). Addition of glutathione or thioredoxin to culture medium reduces intracellular redox status of porcine IVM/IVF embryos, resulting in improved development to the blastocyst stage. Mol. Reprod. Dev. 73, 998–1007.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Perreault, S. D. , Barbee, R. R. , and Slott, V. L. (1988). Importance of glutathione in the acquisition and maintenance of sperm nuclear decondensing activity in maturing hamster oocytes. Dev. Biol. 125, 181–186.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pierce, G. B. , Parchment, R. E. , and Lewellyn, A. L. (1991). Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation 46, 181–186.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ramana, K. V. , Bhatnagar, A. , Srivastava, S. , Yadav, U. C. , Awasthi, S. , Awasthi, Y. C. , and Srivastava, S. K. (2006). Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE). J. Biol. Chem. 281, 17 652–17 660.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Richman, P. G. , and Meister, A. (1975). Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J. Biol. Chem. 250, 1422–1426.
PubMed |

Stover, S. K. , Gushansky, G. A. , Salmen, J. J. , and Gardiner, C. S. (2000). Regulation of γ-glutamate-cysteine ligase expression by oxidative stress in the mouse preimplantation embryo. Toxicol. Appl. Pharmacol. 168, 153–159.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sutovsky, P. , and Schatten, G. (1997). Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biol. Reprod. 56, 1503–1512.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takahashi, M. , Nagai, T. , Hamano, S. , Kuwayama, M. , Okamura, N. , and Okano, A. (1993). Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol. Reprod. 49, 228–232.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takahashi, M. , Keicho, K. , Takahashi, H. , Ogawa, H. , Schultz, R. M. , and Okano, A. (2000). Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by COMET assay. Theriogenology 54, 137–145.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takahashi, M. , Nagai, T. , Okamura, N. , Takahashi, H. , and Okano, A. (2002). Promoting effect of β-mercaptoethanol on in vitro development under oxidative stress and cystine uptake of bovine embryos. Biol. Reprod. 66, 562–567.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tatemoto, H. , Sakurai, N. , and Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol. Reprod. 63, 805–810.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thouas, G. A. , Korfiatis, N. A. , French, A. J. , Jones, G. M. , and Trounson, A. O. (2001). Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. BioMed. Online 3, 25–29.
PubMed |

Vanderhyden, B. C. , and Armstrong, D. T. (1989). Role of cumulus cells and serum on the in vitro maturation, fertilization, and subsequent development of rat oocytes. Biol. Reprod. 40, 720–728.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van Soom, A. , Yuan, Y. Q. , Peelman, L. J. , de Matos, D. G. , Dewulf, J. , Laevens, H. , and de Kruif, A. (2002). Prevalence of apoptosis and inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition. Theriogenology 57, 1453–1465.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Walker, S. K. , Hartwich, K. M. , and Seamark, R. F. (1996). The production of unusually large offspring following embryo manipulation: concepts and challenges. Theriogenology 45, 111–120.
Crossref | GoogleScholarGoogle Scholar |

Yamauchi, N. , and Nagai, T. (1999). Male pronuclear formation in denuded porcine oocytes after in vitro maturation in the presence of cysteamine. Biol. Reprod. 61, 828–833.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yang, H. , Magilnick, N. , Xia, M. , and Lu, S. C. (2008). Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent. Exp. Cell Res. 314, 398–412.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yuan, Y. Q. , Van Soom, A. , Coopman, F. O. J. , Mintiens, K. , Boerjan, M. L. , Van Zeveren, A. , de Kruif, A. , and Peelman, L. J. (2003). Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology 59, 1585–1596.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhang, L. , Jiang, S. , Wazniak, P. J. , Yang, X. , and Godke, R. A. (1995). Cumulus cell function during oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40, 338–344.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhou, P. , Wu, Y.-G. , Li, Q. , Lan, G.-C. , Wang, G. , Gao, D. , and Tan, J.-H. (2008). The interactions between cysteamine, cystine and cumulus cells increase the intracellular glutathione level and developmental capacity of goat cumulus-denuded oocytes. Reproduction 135, 605–611.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zuelke, K. A. , Jeffay, S. C. , Zucker, R. M. , and Perreault, S. D. (2003). Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos. Mol. Reprod. Dev. 64, 106–112.
Crossref | GoogleScholarGoogle Scholar | PubMed |