Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Iloprost, a prostacyclin analogue, stimulates meiotic maturation and early embryonic development in pigs

Ji-Su Kim A B , Jung-Il Chae C , Bong-Seok Song B , Kyu-Sun Lee D , Young-Kug Choo E , Kyu-Tae Chang B , Humdai Park F and Deog-Bon Koo A F G
+ Author Affiliations
- Author Affiliations

A Development and Differentiation Research Center, Korea Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong, Daejeon 305-806, Korea.

B National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Korea.

C Graduate School of Life Science, CHA Stem Cell Institute, Pochon CHA University, 605-21 Yeoksam 1 dong, Gangnamgu, Seoul 135-907, Korea.

D Aging Research Center, Korea Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong, Daejeon 305-806, Korea.

E Department of Life Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.

F Department of Biotechology, College of Engineering, 15 Jillyang Gyeongsan, Gyeobguk 712-714, Korea.

G Corresponding author. Email: dbkoo@daegu.ac.kr

Reproduction, Fertility and Development 22(2) 437-447 https://doi.org/10.1071/RD08287
Submitted: 4 December 2008  Accepted: 13 August 2009   Published: 4 January 2010

Abstract

Oviduct fluid contains various cytokines and growth factors that enhance the embryo development during the preimplantation period. In hatched embryos, prostacyclin (PGI2) improves implantation, but its role during oocyte maturation and early embryo development remains contentious. Therefore, in the present study, we examined the effects of a PGI2 analogue (iloprost) on meiotic maturation and early embryonic development in pigs, as well on the structural integrity, mitochondrial membrane potential and apoptosis in blastocysts. First, meiotic maturation in pig oocytes was examined in the presence of increasing concentrations of iloprost (1, 5 and 10 μM). After IVM, a higher proportion of iloprost-treated compared with untreated oocytes was in MII (90.0% v. 65.7%, respectively; P < 0.05). In addition, protein kinase A activity increased in iloprost-treated oocytes, indicating increased intracellular cAMP concentrations. After 22 h iloprost treatment (44 h total incubation time), western blotting demonstrated increased expression of extracellular signal-regulated kinase (ERK) 1/2, phosphorylated (p-) ERK1/2, cAMP response element-binding protein (CREB), p-CREB and cyclo-oxygenase-2, indicating activation of the mitogen-activated protein kinase and PGI2 pathways. In addition, the frequency of polyspermy decreased in iloprost-treated oocytes (19.9%) compared with control (35.8%), whereas the rate of blastocyst formation increased (P < 0.05). Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) showed that the number of nuclei containing fragmented DNA at the blastocyst stage decreased in the iloprost-treated group compared with control (1.2% v. 3.6%, respectively). In conclusion, iloprost appears to play a direct role in porcine oocyte maturation by enhancing blastocyst structure and survival.

Additional keyword: blastocyst development.


Acknowledgements

This study was supported by grants from the KBRDG Initiative Research Program (F104AD010004–06A0401–00410) and the BioGreen 21 Program (20070401034017), the Ministry of Science and Technology, and the Rural Development Administration of the Republic of Korea.


References

Abeydeera, L. R. , and Day, B. N. (1997). Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified Tris-buffered medium with frozen–thawed ejaculated spermatozoa. Biol. Reprod. 57, 729–734.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Acton, B. M. , Jurisicova, A. , Jurisica, I. , and Casper, R. F. (2004). Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol. Hum. Reprod. 10, 23–32.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Betts, D. H. , and King, W. A. (2001). Genetic regulation of embryo death and senescence. Theriogenology 55, 171–191.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bornslaeger, E. A. , Mattei, P. , and Schultz, R. M. (1986). Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation. Dev. Biol. 114, 453–462.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Cho, Y. S. , and Cho-Chung, Y. S. (2003). Antisense protein kinase A RIalpha acts synergistically with hydroxycamptothecin to inhibit growth and induce apoptosis in human cancer cells: molecular basis for combinatorial therapy. Clin. Cancer Res. 9, 1171–1178.
PubMed |  CAS |

Debey, S. , Meyer-Kirchrath, J. , and Schror, K. (2003). Regulation of cyclooxygenase-2 expression by iloprost in human vascular smooth muscle cells. Role of transcription factors CREB and ICER. Biochem. Pharmacol. 65, 979–988.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Funahashi, H. , Cantley, T. C. , Stumpf, T. T. , Terlouw, S. L. , and Day, B. N. (1994). In vitro development of in vitro-matured porcine oocytes following chemical activation or in vitro fertilization. Biol. Reprod. 50, 1072–1077.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Funahashi, H. , Cantley, T. C. , and Day, B. N. (1997). Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization. Biol. Reprod. 57, 49–53.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Han, Y. M. , Abeydeera, L. R. , Kim, J. H. , Moon, H. B. , Cabot, R. A. , Day, B. N. , and Prather, R. S. (1999). Growth retardation of inner cell mass cells in polyspermic porcine embryos produced in vitro. Biol. Reprod. 60, 1110–1113.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hao, Y. , Lai, L. , Mao, J. , Im, G. S. , Bonk, A. , and Prather, R. S. (2004). Apoptosis in parthenogenetic preimplantation porcine embryos. Biol. Reprod. 70, 1644–1649.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Helmer, K. S. , Cui, Y. , Chang, L. , Dewan, A. , and Mercer, D. W. (2003). Effects of ketamine/xylazine on expression of tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclo-oxygenase-2 in rat gastric mucosa during endotoxemia. Shock 20, 63–69.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Huang, J. C. , Goldsby, J. S. , Arbab, F. , Melhem, Z. , Aleksic, N. , and Wu, K. K. (2004a). Oviduct prostacyclin functions as a paracrine factor to augment the development of embryos. Hum. Reprod. 19, 2907–2912.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Huang, J. C. , Goldsby, J. S. , and Wun, W. S. (2004b). Prostacyclin enhances the implantation and live birth potentials of mouse embryos. Hum. Reprod. 19, 1856–1860.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kim, J. S. , Cho, Y. S. , Song, B. S. , Wee, G. , Park, J. S. , Choo, Y. K. , Yu, K. , Lee, K. K. , Han, Y. M. , and Koo, D. B. (2008). Exogenous dibutyryl cAMP affects meiotic maturation via protein kinase A activation; it stimulates further embryonic development including blastocyst quality in pigs. Theriogenology 69, 290–301.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kim, N. H. , and Menino, A. R. (1995). Effects of stimulators of protein kinases A and C and modulators of phosphorylation on plasminogen activator activity in porcine oocyte–cumulus cell complexes during in vitro maturation. Mol. Reprod. Dev. 40, 364–370.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kuo, J. F. , Krueger, B. K. , Sanes, J. R. , and Greengard, P. (1970). Cyclic nucleotide-dependent protein kinases. V. Preparation and properties of adenosine 3′,5′-monophosphate-dependent protein kinase from various bovine tissues. Biochim. Biophys. Acta 212, 79–91.
PubMed |  CAS |

Levy, R. R. , Cordonier, H. , Czyba, J. C. , and Guerin, J. F. (2001). Apoptosis in preimplantation mammalian embryo and genetics. Ital. J. Anat. Embryol. 106, 101–108.
PubMed |  CAS |

Macháty, Z. , Day, B. N. , and Prather, R. S. (1998). Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59, 451–455.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Maller, J. L. , and Krebs, E. G. (1977). Progesterone-stimulated meiotic cell division in Xenopus oocytes. Induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3′,5′-monophosphate-dependent protein kinase. J. Biol. Chem. 252, 1712–1718.
PubMed |  CAS |

Petters, R. M. , and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
PubMed |  CAS |

Somfai, T. , Kikuchi, K. , Onishi, A. , Iwamoto, M. , Fuchimoto, D. , Papp, A. B. , Sato, E. , and Nagai, T. (2003). Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes. Zygote 11, 199–206.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Van Blerkom, J. , Davis, P. , Mathwig, V. , and Alexander, S. (2002). Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum. Reprod. 17, 393–406.
Crossref | GoogleScholarGoogle Scholar | PubMed |

van Soom, A. , Ysebaert, M. T. , and de Kruif, A. (1997). Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol. Reprod. Dev. 47, 47–56.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

VanRenterghem, B. , Browning, M. D. , and Maller, J. L. (1994). Regulation of mitogen-activated protein kinase activation by protein kinases A and C in a cell-free system. J. Biol. Chem. 269, 24 666–24 672.
PubMed |  CAS |

Wilding, M. , Dale, B. , Marino, M. , di Matteo, L. , Alviggi, C. , Pisaturo, M. L. , Lombardi, L. , and De Placido, G. (2001). Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16, 909–917.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |