Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Telomeres and reproductive aging

David L. Keefe A C and Lin Liu A B
+ Author Affiliations
- Author Affiliations

A Department of Ob/Gyn, University of South Florida, Tampa, FL 33606, USA.

B College of Life Sciences, Nankai University, Tianjin 300071, China.

C Corresponding author. Email: dkeefe@hsc.usf.edu

Reproduction, Fertility and Development 21(1) 10-14 https://doi.org/10.1071/RD08229
Published: 9 December 2008

Abstract

Infertility, miscarriage and aneuploid offspring increase with age in women, and meiotic dysfunction underlies reproductive aging. How aging disrupts meiotic function in women remains unclear, but as women increasingly delay having children, solving this problem becomes an urgent priority. Telomeres consist of a (TTAGGG)n repeated sequence and associated proteins at chromosome ends, mediate aging in mitotic cells and may also mediate aging during meiosis. Telomeres shorten both during DNA replication and from the response to oxidative DNA damage. Oocytes do not divide in adult mammals, but their precursors do replicate during fetal oogenesis; eggs ovulated from older females have traversed more mitotic cell cycles before entering meiosis during fetal oogenesis than eggs ovulated from younger females. Telomeres also would be expected to shorten from inefficient DNA repair of oxidative damage, because the interval between fetal oogenesis and ovulation is exceptionally prolonged in women. We have tested the hypothesis that telomere shortening disrupts meiosis by shortening telomeres experimentally in mice, which normally do not exhibit age-related meiotic dysfunction. Interestingly, mouse telomeres are much longer than human telomeres, but genetic or pharmacological shortening of mouse telomeres recapitulates in mice the human reproductive aging phenotype as the mouse telomeres reach the length of telomeres from older women. These observations led us to propose a telomere theory of reproductive aging. Moreover, chronological oxidative stress increases with reproductive aging, leading to DNA damage preferentially at (TTAGGG)n repeats. Finally, if telomeres shorten with aging, how do they reset across generations? Telomerase could not play a significant role in telomere elongation during early development, because this enzyme is not active until the blastocyst stage, well after the stage when telomere elongation takes place. Rather, telomeres lengthen during the early cell cycles of development by a novel mechanism involving recombination and sister chromatid exchange. Telomere dysfunction resulting from oxidative stress, a DNA damage response or aberrant telomere recombination may contribute to reproductive aging-associated meiotic defects, miscarriage and infertility.

Additional keywords: aneuploidy, infertility, meiosis, reproduction.


References

Abruzzo, M. A. , and Hassold, T. J. (1995). Etiology of nondisjunction in humans. Environ. Mol. Mutagen. 25((Suppl. 2)), 38–47.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Barritt, J. A. , Brenner, C. A. , Cohen, J. , and Matt, D. W. (1999). Mitochondrial DNA rearrangements in human oocytes and embryos. Mol. Hum. Reprod. 5, 927–933.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Barritt, J. A. , Cohen, J. , and Brenner, C. A. (2000). Mitochondrial DNA point mutation in human oocytes is associated with maternal age. Reprod. Biomed. Online 1, 96–100.
PubMed |  CAS |

Bass, H. W. , Marshall, W. F. , Sedat, J. W. , Agard, D. A. , and Cande, W. Z. (1997). Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J. Cell Biol. 137, 5–18.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Battaglia, D. E. , Goodwin, P. , Klein, N. A. , and Soules, M. R. (1996). Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum. Reprod. 11, 2217–2222.
PubMed |  CAS |

Blackburn, E. H. (2005a). Telomerase and cancer: Kirk A. Landon–AACR prize for basic cancer research lecture. Mol. Cancer Res. 3, 477–482.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Blackburn, E. H. (2005b). Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 579, 859–862.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Blasco, M. A. , Gasser, S. M. , and Lingner, J. (1999). Telomeres and telomerase. Genes Dev. 13, 2353–2359.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chen, X. , Prosser, R. , Simonetti, S. , Sadlock, J. , Jagiello, G. , and Schon, E. A. (1995). Rearranged mitochondrial genomes are present in human oocytes. Am. J. Hum. Genet. 57, 239–247.
CAS | PubMed |

Edwards, R. G. (1970). Are oocytes formed and used sequentially in the mammalian ovary? Philos. Trans. R. Soc. Lond. B Biol. Sci. 259, 103–105.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hassold, T. , and Hunt, P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Henderson, S. A. , and Edwards, R. G. (1968). Chiasma frequency and maternal age in mammals. Nature 218, 22–28.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Keefe, D. L. , Niven-Fairchild, T. , Powell, S. , and Buradagunta, S. (1995). MtDNA deletions in oocytes and reproductive aging in women. Fertil. Steril. 64, 577–583.
PubMed |  CAS |

Keefe, D. L. , Franco, S. , Liu, L. , Trimarchi, J. , Cao, B. , Weitzen, S. , Agarwal, S. , and Blasco, M. A. (2005). Telomere length predicts embryo fragmentation after in vitro fertilization in women: toward a telomere theory of reproductive aging in women. Am. J. Obstet. Gynecol. 192, 1256–1260.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Keefe, D. L. , Marquard, K. , and Liu, L. (2006). The telomere theory of reproductive senescence in women. Curr. Opin. Obstet. Gynecol. 18, 280–285.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Keefe, D. L. , Liu, L. , and Marquard, K. (2007). Telomeres and aging-related meiotic dysfunction in women. Cell. Mol. Life Sci. 64, 139–143.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kurz, D. J. , Decary, S. , Hong, Y. , Trivier, E. , Akhmedoc, A. , and Erusalimsky, J. D. (2004). Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J. Cell Sci. 117, 2417–2426.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lamb, N. E. , Feingold, E. , Savage, A. , Avramopoulos, D. , and Freeman, S. , et al. (1997). Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum. Mol. Genet. 6, 1391–1399.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lansdorp, P. M. (1996). Close encounters of the PNA kind. Nat. Biotechnol. 14, 1653.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

LeMaire-Adkins, R. , Radke, K. , and Hunt, P. A. (1997). Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J. Cell Biol. 139, 1611–1619.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Liu, L. , Blasco, M. A. , and Keefe, D. L. (2002a). Requirement of functional telomeres for metaphase chromosome alignments and integrity of meiotic spindles. EMBO Rep. 3, 230–234.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Liu, L. , Trimarchi, J. , and Keefe, D. L. (2002b). Haploidy but not parthenogenetic activation leads to increased incidence of apoptosis in mouse embryos. Biol. Reprod. 66, 204–210.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Liu, L. , Trimarchi, J. R. , Smith, P. J. , and Keefe, D. L. (2002c). Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1, 40–46.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Liu, L. , Trimarchi, J. R. , Navarro, P. , Blasco, M. A. , and Keefe, D. L. (2003). Oxidative stress contributes to arsenic-induced telomere attrition, chromosome instability, and apoptosis. J. Biol. Chem. 278, 31 998–32 004.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Liu, L. , Franco, S. , Spyropoulos, B. , Moens, P. B. , Blasco, M. A. , and Keefe, D. L. (2004). Irregular telomeres impair meiotic synapsis and recombination in mice. Proc. Natl Acad. Sci. USA 101, 6496–6501.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Liu, L. , Bailey, S. M. , Okuka, M. , Muñoz, P. , and Li, C. , et al. (2007). Telomere lengthening early in development. Nat. Cell Biol. 9, 1436–1441.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Munne, S. , Chen, S. , Fischer, J. , Colls, P. , and Zheng, X. , et al. (2005). Preimplantation genetic diagnosis reduces pregnancy loss in women aged 35 and older with a history of recurrent miscarriages. Fertil. Steril. 84, 331–335.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Navarro, P. A. , Liu, L. , Ferriani, R. A. , and Keefe, D. L. (2006). Arsenite induces aberrations in meiosis that can be prevented by coadministration of N-acetylcysteine in mice. Fertil. Steril. 85((Suppl. 1)), 1187–1194.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Navot, D. , Bergh, P. A. , Williams, M. A. , Garrisi, G. J. , and Guzman, I. , et al. (1991). Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility. Lancet 337, 1375–1377.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Passos, J. F. , and von Zglinicki, T. (2005). Mitochondria, telomeres and cell senescence. Exp. Gerontol. 40, 466–472.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Petronis, A. (1999). Alzheimer’s disease and Down syndrome: from meiosis to dementia. Exp. Neurol. 158, 403–413.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Polani, P. E. , and Crolla, J. A. (1991). A test of the production line hyothesis of mammalian cogenesis. Hum. Genet. 88, 64–70.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Roig, I. , Liebe, B. , Egozcue, J. , Cabero, L. , Garcia, M. , and Scherthan, H. (2004). Female-specific features of recombinatorial double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma 113, 22–23.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sastre, J. , Borras, C. , Garcia-Sala, D. , Lloret, A. , Pallardo, F. V. , and Nina, J. (2002). Mitochondrial damage in aging and apoptosis. Ann. N. Y. Acad. Sci. 959, 448–451.
PubMed |  CAS |

Scherthan, H. (2006). Factors directing telomere dynamics in synaptic meiosis. Biochem. Soc. Trans. 34, 550–553.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Scherthan, H. , Weich, S. , Schwegler, H. , Heyting, C. , Harle, M. , and Cremer, T. (1996). Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J. Cell Biol. 134, 1109–1125.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tarin, J. J. , Perez-Albala, S. , and Cano, A. (2002). Oral antioxidants counteract the negative effects of female aging on oocyte quantity and quality in the mouse. Mol. Reprod. Dev. 61, 385–397.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Verlinsky, Y. , Cohen, J. , Munne, S. , Gianaroli, L. , Simpson, J. L. , Ferraretti, A. P. , and Kuliev, A. (2004). Over a decade of experience with preimplantation genetic diagnosis: a multicenter report. Fertil. Steril. 82, 292–294.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Woods, L. M. , Hodges, C. A. , Baart, E. , Baker, S. M. , Liskay, M. , and Hunt, P. A. (1999). Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh 1 mutant mice. J. Cell Biol. 145, 1395–1406.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wright, W. E. , Piatyszek, M. A. , Rainey, W. E. , Byrd, W. , and Shay, J. W. (1996). Telomerase activity in human germ line and embryonic tissues and cells. Dev. Genet. 18, 173–179.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zijlmans, J. M. , Martens, U. M. , Poon, S. S. , Raap, A. K. , Tanke, H. J. , Ward, R. K. , and Lansdorp, P. M. (1997). Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc. Natl Acad. Sci. USA 94, 7423–7428.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |