Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Expression and compartmentalisation of the glycolytic enzymes GAPDH and pyruvate kinase in boar spermatogenesis

Sandra Feiden A , Uwe Wolfrum B , Gerhard Wegener A and Günter Kamp A C
+ Author Affiliations
- Author Affiliations

A Institute of Zoology, Molecular Physiology Section, Johannes Gutenberg University Mainz, Becherweg 9-11, 55099 Mainz, Germany.

B Cell and Matrix Biology Section, Johannes Gutenberg University Mainz, Becherweg 9-11, 55099 Mainz, Germany.

C Corresponding author. Email: kamp@uni-mainz.de

Reproduction, Fertility and Development 20(6) 713-723 https://doi.org/10.1071/RD08004
Submitted: 8 January 2008  Accepted: 18 May 2008   Published: 9 July 2008

Abstract

Boar spermatozoa contain isoforms of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) and pyruvate kinase (PK, EC 2.7.1.40). The sperm-specific forms, GAPDH-S and PK-S, are tightly bound to cell structures. By immunofluorescence microscopy GAPDH-S and PK-S were localised in the principal piece of the boar sperm flagellum as well as in the acrosomal region of the sperm head and at the head–midpiece junction. The midpiece of the flagellum, however, contains isoforms of GAPDH and PK that were only recognised by antibodies against somatic GAPDH and PK, respectively, but not by the antibodies against GAPDH-S and PK-S. In sections of boar testis, GAPDH-S and PK-S were first detected in elongating spermatids when both the developing flagellum and the head were labelled with antibodies against GAPDH-S and PK-S. In contrast, antibodies against rabbit muscle GAPDH and PK labelled all developmental stages of germ cells and also neighbouring contractile cells. Thus, the structure-bound sperm-specific enzymes, GAPDH-S and PK-S, appeared only late in spermatogenesis simultaneously with the development of the structures to which they are bound. Anchoring glycolytic enzymes to structures in these mitochondria-free regions may secure ATP-production for both motility and acrosome function.

Additional keywords: glycolysis, PK, spermatozoa.


Acknowledgements

We thank Ms. Gabi Stern-Schneider for her excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (Ka 583/7–4), and Sandra Feiden was the recipient of a scholarship (LGFG) from Rheinland-Pfalz.


References

Bajpai, M. , Gupta, G. , and Setty, B. S. (1998). Changes in carbohydrate metabolism of testicular germ cells during meiosis in the rat. Eur. J. Endocrinol. 138, 322–327.
Crossref | GoogleScholarGoogle Scholar | PubMed | Gupta G. S. (2005). ‘Proteomics of Spermatogenesis.’ (Springer Science + Business Media Inc.: New York.)

Hedger, M. P. , and Eddy, E. M. (1986). Monoclonal antibodies against rat Leydig cell surface antigens. Biol. Reprod. 35, 1309–1319.
Crossref | GoogleScholarGoogle Scholar | PubMed | Mann T., and Lutwak-Mann C. (1981). ‘Male Reproductive Function and Semen.’ (Springer-Verlag: Berlin, Heidelberg, New York.)

Marin, S. , Chiang, K. , Bassilian, S. , Lee, W. N. P. , Boros, L. G. , Fernandez-Novell, J. M. , Centelles, J. J. , Medrano, A. , Rodriguez-Gil, J. E. , and Cascante, M. (2003). Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Lett. 554, 342–346.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McCarrey, J. R. , Berg, W. M. , Paragioudakis, S. J. , Zhang, P. L. , Dilworth, D. D. , Arnold, B. L. , and Rossi, J. J. (1992). Differential transcription of Pgk genes during spermatogenesis in the mouse. Dev. Biol. 154, 160–168.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Medrano, A. , Garcia-Gil, N. , Ramio, L. , Montserrat Rivera, M. , and Fernandez-Novell, J. M. , et al. (2006). Hexose-specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly-diluted boar spermatozoa. Mol. Reprod. Dev. 73, 1179–1194.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Miki, K. , Qu, W. , Goulding, E. H. , Willis, W. D. , Bunch, D. O. , Strader, L. F. , Perreault, S. D. , Eddy, E. M. , and O’Brien, D. A. (2004). Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc. Natl. Acad. Sci. USA 101, 16 501–16 506.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Millette, C. F. , Laufer, M. R. , Owens, N. , and Scott, B. K. (1984). Serological and biochemical identification of a plasma membrane antigen specific to Leydig cells. Biol. Reprod. 31, 1037–1048.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mori, C. , Nakamura, N. , Welch, J. E. , Gotoh, H. , Goulding, E. H. , Fujioka, M. , and Eddy, E. M. (1998). Mouse spermatogenic cell-specific type 1 hexokinase (mHk1-s) transcripts are expressed by alternative splicing from the mHk1 gene and the HK1-S protein is localized mainly in the sperm tail. Mol. Reprod. Dev. 49, 374–385.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mukai, C. , and Okuno, M. (2004). Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod. 71, 540–547.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nakamura, M. , Okinaga, S. , and Arai, K. (1984). Metabolism of pachytene primary spermatocytes from rat testes: pyruvate maintenance of adenosine triphosphate level. Biol. Reprod. 30, 1187–1197.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nelson, N. , and Harvey, W. R. (1999). Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol. Rev. 79, 361–385.
PubMed |

Rodriguez-Gil, J. E. (2006). Mammalian sperm energy resources management and survival during conservation in refrigeration. Reprod. Domest. Anim. 41((Suppl. 2)), 11–20.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schürmann, A. , Axer, H. , Scheepers, A. , Doege, H. , and Joost, H. G. (2002). The glucose transport facilitator GLUT8 is predominantly associated with the acrosomal region of mature spermatozoa. Cell Tissue Res. 307, 237–242.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sun-Wada, G. H. , Imai-Senga, Y. , Yamamoto, A. , Murata, Y. , Hirata, T. , Wada, Y. , and Futai, M. (2002). A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J. Biol. Chem. 277, 18 098–18 105.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thundathil, J. C. , Anzar, M. , and Buhr, M. M. (2006). Na+/K+ATPase as a signaling molecule during bovine sperm capacitation. Biol. Reprod. 75, 308–317.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Travis, A. J. , Foster, J. A. , Rosenbaum, N. A. , Visconti, P. E. , Gerton, G. L. , Kopf, G. S. , and Moss, S. B. (1998). Targeting of a germ cell-specific type 1 hexokinase lacking a porin-binding domain to the mitochondria as well as to the head and fibrous sheath of murine spermatozoa. Mol. Biol. Cell 9, 263–276.
PubMed |

Urner, F. , and Sakkas, D. (1996). Glucose participates in sperm–oocyte fusion in the mouse. Biol. Reprod. 55, 917–922.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Visconti, P. E. , Olds-Clarke, P. , Moss, S. B. , Kalab, P. , Travis, A. J. , de las Heras, M. , and Kopf, G. S. (1996). Properties and localization of a tyrosine-phosphorylated form of hexokinase in mouse sperm. Mol. Reprod. Dev. 43, 82–93.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Welch, J. E. , Schatte, E. C. , O’Brien, D. A. , and Eddy, E. M. (1992). Expression of a glyceraldehyde 3-phosphate dehydrogenase gene specific to mouse spermatogenic cells. Biol. Reprod. 46, 869–878.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Welch, J. E. , Brown, P. L. , O’Brien, D. A. , Magyar, P. L. , Bunch, D. O. , Mori, C. , and Eddy, E. M. (2000). Human glyceraldehyde 3-phosphate dehydrogenase-2 gene is expressed specifically in spermatogenic cells. J. Androl. 21, 328–338.
PubMed |

Welch, J. E. , Barbee, R. R. , Magyar, P. L. , Bunch, D. O. , and O’Brien, D. A. (2006). Expression of the spermatogenic cell-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) in rat testis. Mol. Reprod. Dev. 73, 1052–1060.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Westhoff, D. , and Kamp, G. (1997). Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa. J. Cell Sci. 110, 1821–1829.
PubMed |

Williams, A. C. , and Ford, W. C. (2001). The role of glucose in supporting motility and capacitation in human spermatozoa. J. Androl. 22, 680–695.
PubMed |

Wolfrum, U. (1990). Actin filaments: the main components of the scolopale in insect sensilla. Cell Tissue Res. 261, 85–96.
Crossref | GoogleScholarGoogle Scholar |