Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Analysis of selected transcript levels in porcine spermatozoa, oocytes, zygotes and two-cell stage embryos

Bartosz Kempisty A , Paweł Antosik B , Dorota Bukowska B , Marta Jackowska A , Margarita Lianeri A , Jędrzej M. Jaśkowski B and Paweł P. Jagodziński A C
+ Author Affiliations
- Author Affiliations

A Department of Biochemistry and Molecular Biology, University of Medical Sciences, Święcickiego 6 St. 60-781, Poznań, Poland.

B Department of Agricultural Veterinary, University of Agriculture, Wojska Polskiego 52 St. 60-628, Poznań, Poland.

C Corresponding author. Email: pjagodzi@am.poznan.pl

Reproduction, Fertility and Development 20(4) 513-518 https://doi.org/10.1071/RD07211
Submitted: 20 November 2007  Accepted: 21 February 2008   Published: 11 April 2008

Abstract

It has been suggested that spermatozoa can deliver mRNAs to the oocyte during fertilisation. Using reverse transcription and real-time quantitative polymerase chain reaction analysis (RQ-PCR), we evaluated the presence of clusterin (CLU), protamine 2 (PRM2), calmegin (CLGN), cAMP-response element modulator protein (CREM), methyltransferase 1 (DNMT1), linker histone 1 (H1), protamine 1 (PRM1), TATA box-binding protein associated factor 1 (TAF1) and TATA box-binding protein (TBP) in porcine mature oocytes, zygotes and two-cell stage embryos. Spermatozoa isolated from semen samples of boars contained all transcripts investigated, whereas oocytes contained only CREM, H1, TAF1, and TBP mRNAs. The zygote and two-cell stage embryos contained CLU, CREM, H1, PRM1, PRM2, TAF1 and TBP transcripts. Our observations suggest that porcine spermatozoa may delivery CLU, PRM1 and PRM2 mRNAs to the oocyte, which may contribute to zygotic and early embryonic development.

Additional keywords: mRNA, pig.


Acknowledgements

This study was supported by grant no. 1682/B/PO1/2007/33 from the Polish Ministry of Scientific Research and Information Technology.


References

Aquila, S. , Sisci, D. , Gentile, M. , Middea, E. , Siciliano, L. , and Andò, S. (2002). Human ejaculated spermatozoa contain active P450 aromatase. J. Clin. Endocrinol. Metab. 87, 3385–3390.
Crossref | GoogleScholarGoogle Scholar | PubMed | Davidson E. H. (1986). ‘Gene activity in Early Development.’ (Academic Press: New York.)

DeJong, J. (2006). Basic mechanisms for the control of germ cell gene expression. Gene 366, 39–50.
Crossref | GoogleScholarGoogle Scholar | PubMed | Smith D. S., and Richter J. D. (1985). Synthesis, accumulation, and utilization of maternal macromolecules during oogenesis and oocyte maturation. In ‘Biology of Fertilization. Vol. 1’. (Ed. C. B. Ma. A. Monroy.) pp. 141–178. (Academic Press: New York.)

Song, J. L. , and Wessel, G. M. (2005). How to make an egg: transcriptional regulation in oocytes. Differentiation 73, 1–17.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stebbins-Boaz, B. , and Richter, J. D. (1997). Translational control during early development. Crit. Rev. Eukaryot. Gene Expr. 7, 73–94.
PubMed |

Sun, Q. Y. , and Nagai, T. (2003). Molecular mechanisms underlying pig oocyte maturation and fertilization. J. Reprod. Dev. 49, 347–359.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Telford, N. A. , Watson, A. J. , and Schultz, G. A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90–100.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Viard, I. , Wehrli, P. , Jornot, L. , Bullani, R. , Vechietti, J.-L. , Schifferli, J. A. , Tschopp, J. , and French, L. E. (1999). Clusterin gene expression mediates resistance to apoptotic cell death induced by heat shock and oxidative stress. J. Invest. Dermatol. 112, 290–296.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vigneault, C. , McGraw, S. , Massicotte, L. , and Sirard, M. A. (2004). Transcription factor expression patterns in bovine in vitro-derived embryos prior to maternal–zygotic transition. Biol. Reprod. 70, 1701–1709.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wassarman, P. M. , and Kinloch, R. A. (1992). Gene expression during oogenesis in mice. Mutat. Res. 296, 3–15.
PubMed |

Wilson, M. R. , and Easterbrook-Smith, S. B. (2000). Clusterin is a secreted mammalian chaperone. Trends Biochem. Sci. 25, 95–98.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wrobel, G. , and Primig, M. (2005). Mammalian male germ cells are fertile ground for expression profiling of sexual reproduction. Reproduction 129, 1–7.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yokoo, M. , and Sato, E. (2004). Cumulus–oocyte complex interactions during oocyte maturation. Int. Rev. Cytol. 235, 251–291.
PubMed |

Yoshinaga, K. , Tanii, I. , and Toshimori, K. (1999). Molecular chaperone calmegin localization to the endoplasmic reticulum of meiotic and post-meiotic germ cells in the mouse testis. Arch. Histol. Cytol. 62, 283–293.
Crossref | GoogleScholarGoogle Scholar | PubMed |