Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Influence of nitric oxide during maturation on bovine oocyte meiosis and embryo development in vitro

Kátia R. L. Schwarz A , Pedro R. L. Pires A B , Paulo R. Adona A , Tiago H. Câmara de Bem A and Cláudia L. V. Leal A C
+ Author Affiliations
- Author Affiliations

A Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga-SP, CEP 13635-900, Brazil.

B Centro Universitário Hermínio Ometto, UNIARARAS, Av. Dr Maximiliano Baruto, 500, Araras-SP, CEP 13607-339, Brazil.

C Corresponding author. Email: clvleal@usp.br

Reproduction, Fertility and Development 20(4) 529-536 https://doi.org/10.1071/RD07209
Submitted: 20 November 2007  Accepted: 27 January 2008   Published: 11 April 2008

Abstract

The effect of s-nitroso-n-acetyl-l,l-penicillamine (SNAP, a nitric oxide donor) during in vitro maturation (IVM) on nuclear maturation and embryo development was investigated. The effect of increasing nitric oxide (NO) during prematuration or maturation, or both, on embryo development was also assessed. 10–3 m SNAP nearly blocked oocytes reaching metaphase II (MII) (7%, P < 0.05) while 10–5 m SNAP showed intermediate proportions (55%). For 10–7 m SNAP and controls (without SNAP), MII percentages were similar (72% for both, P > 0.05), but superior to the other treatment groups (P < 0.05). Blastocyst development, however, was not affected (38% for all treatments, P < 0.05). TUNEL-positive cells in hatched blastocysts (Day 9) increased when IVM included 10–5 m SNAP (8 v. 3 to 4 cells in the other treatments, P > 0.05), without affecting total cell numbers (240 to 291 cells, P > 0.05). When oocytes were prematured followed by IVM with or without 10–7 m SNAP, during either culture period or both, blastocyst development was similar (26 to 40%, P > 0.05). When SNAP was included during both prematuration and IVM, the proportion of Day 9 hatched embryos increased (28% v. 14 to 19% in the other treatments, P < 0.05). Apoptotic cells, however, increased when SNAP was included (6 to 10 cells) in comparison to prematuration and maturation without SNAP (3 cells, P < 0.05). NO may be involved in meiotic progression and apoptosis during embryo development.

Additional keywords: apoptosis, meiosis block.


Acknowledgements

This work was supported by FAPESP – São Paulo, Brazil. Grant # 04/11733–0. K. R. L. Schwarz and P. R. L. Pires were recipients of studentships from FAPESP – São Paulo, Brazil (# 04/12253–1 and # 06/59599–5).


References

Anguita, B. , Vandaele, L. , Mateusen, D. , Maes, D. , and Van Soom, A. (2007). Developmental competence of bovine oocytes is not related to apoptosis incidence in oocytes, cumulus cells and blastocysts. Theriogenology 67, 537–549.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ayres, M. M. , Ayres, M. J. , Ayres, D. L. , and Santos, A. S. (2005). Análise de Variância. Bio Estat 4.0 4, 39–44.


Basini, G. , Baratta, M. , Ponderato, N. , Bussolati, S. , and Tamanini, C. (1998). Is nitric oxide an autocrine modulator of bovine granulosa cell function? Reprod. Fertil. Dev. 10, 471–478.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bilodeau-Goeseels, S. (2007). Effects of manipulating the nitric oxide/cyclic GMP pathway on bovine oocyte meiotic resumption in vitro. Theriogenology 68, 693–701.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Blaise, G. A. , Gauvin, D. , Gangal, M. , and Authier, S. (2005). Nitric oxide, cell signalling and cell death. Toxicology 208, 177–192.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bu, S. , Xia, G. , Tao, Y. , Lei, L. , and Zhou, B. (2003). Dual effects of nitric oxide on meiotic maturation of mouse cumulus cell-enclosed oocytes in vitro. Mol. Cell. Endocrinol. 207, 21–30.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bu, S. , Xie, H. , Tao, Y. , Wang, J. , and Xia, G. (2004). Nitric oxide influences the maturation of cumulus cell-enclosed mouse oocytes cultured in spontaneous maturation medium and hypoxanthine-supplemented medium through different signalling pathways. Mol. Cell. Endocrinol. 223, 85–93.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Chen, H. W. , Jiang, W. S. , and Tzeng, C. R. (2001). Nitric oxide as a regulator of preimplantation embryo development and apoptosis. Fertil. Steril. 75, 1163–1171.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Denninger, J. W. , and Marletta, M. A. (1999). Guanylate cyclase and the NO/cGMP signaling pathway. Biochim. Biophys. Acta 1411, 334–350.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed |

Ebeling, S. , Shuon, C. , and Meinecke, B. (2007). Mitogen-activated protein kinase phosphorylation patterns in pig oocytes and cumulus cells during gonadotrophin-induced resumption of meiosis in vitro. Zygote 15, 139–147.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Espey, M. G. , Miranda, K. M. , and Feelisch, M. (2000). Mechanisms of cell death governed by the balance between nitrosative and oxidative stress. Ann. N. Y. Acad. Sci. 899, 209–221.
PubMed |

Farin, C. E. , Rodriguez, K. F. , Alexander, J. E. , Hockney, J. E. , Herrick, J. R. , and Kennedy-Stoskopf, S. (2007). The role of transcription in EGF- and FSH-mediated oocyte maturation in vitro. Anim. Reprod. Sci. 98, 97–112.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Goud, A. P. , Goud, P. T. , Diamond, M. P. , and Abu-Soud, H. M. (2005). Nitric oxide delays oocyte ageing. Biochemistry 44, 11 361–11 368.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Grasselli, F. , Ponderato, N. , Basini, G. , and Tamanini, C. (2001). Nitric oxide synthase expression and nitric oxide/cyclic GMP pathway in swine granulosa cells. Domest. Anim. Endocrinol. 20, 241–252.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed |

Hattori, M. A. , Sakamoto, K. , Fujihara, N. , and Kojima, I. (1996). Nitric oxide: a modulator for epidermal growth factor receptor expression in developing ovarian granulosa cells. Am. J. Physiol. Cell Physiol. 270, C812–C818.


Hattori, M. A. , Nishida, N. , Takesue, K. , Kato, Y. , and Fujihara, N. (2000). FSH suppression of nitric oxide synthesis in porcine oocytes. J. Mol. Endocrinol. 24, 65–73.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hattori, M. A. , Takesue, K. , Kato, Y. , and Fujihara, N. (2001). Expression of endothelial nitric oxide synthase in the porcine oocyte and its possible function. Mol. Cell. Biochem. 219, 121–126.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hendriksen, P. J. M. , Vos, P. L. A. M. , Steenweg, W. N. M. , Bevers, M. M. , and Dieleman, S. J. (2000). Bovine follicular development and its effect on the in vitro competence of oocytes. Theriogenology 53, 11–20.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hyttel, P. , Fair, T. , Callesen, H. , and Greve, T. (1997). Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 23–32.
Crossref | GoogleScholarGoogle Scholar |

Jablonka-Shariff, A. , and Olson, L. M. (1997). Hormonal regulation of nitric oxide synthases and their cell-specific expression during follicular development in the rat ovary. Endocrinology 138, 460–468.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jablonka-Shariff, A. , and Olson, L. M. (1998). The role of nitric oxide in oocyte meiotic maturation and ovulation: meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology 139, 2944–2954.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jablonka-Shariff, A. , and Olson, L. M. (2000). Nitric oxide is essential for optimal meiotic maturation of murine cumulus-oocyte complexes in vitro. Mol. Reprod. Dev. 55, 412–421.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jablonka-Shariff, A. , Basuray, R. , and Olson, L. M. (1999). Inhibitors of nitric oxide synthase influence oocyte maturation in rats. J. Soc. Gynecol. Investig. 6, 95–101.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kone, B. C. , Kuncewicz, T. , Zhang, W. , and Yu, Z.-Y. (2003). Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide Am. J. Physiol. Renal Physiol. 285, F178–F190.
PubMed | | PubMed |

Kubelka, M. , Motlik, J. , Schultz, R. M. , and Pavlok, A. (2000). Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes, without influencing chromosome condensation activity. Biol. Reprod. 62, 292–302.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kuo, R. C. , Baxter, G. T. , Thompson, S. H. , Strcker, S. A. , Bonaventura, J. , and Epel, D. (2000). NO is necessary and sufficient for egg activation at fertilization. Nature 406, 633–636.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Li, J. , and Billiar, T. R. (2000). The role of nitric oxide in apoptosis. Semin. Perinatol. 24, 46–50.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mitchell, L. M. , Kennedy, C. R. , and Hartshorne, G. M. (2004). Expression of nitric oxide synthase and effect of substrate manipulation of the nitric oxide pathway in mouse ovarian follicles. Hum. Reprod. 19, 30–40.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nakamura, Y. , Yamagata, Y. , Sugino, N. , Takayama, H. , and Kato, H. (2002). Nitric oxide inhibits oocyte meiotic maturation. Biol. Reprod. 67, 1588–1592.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Natori, M. M. , Santos, N. P. , Adona, P. R. , Pires, P. R. L. , Caldas-Bussiere, M. C. , and Leal, C. L. V. (2005). Detecção da enzima óxido nítrico sintase endotelial (eNOS) em ovários bovinos. Acta Scientiae Veterinareae 33, 338.[Abstract]


Nishida, N. , Hattori, M. A. , Takesue, K. , Kato, Y. , and Fujihara, N. (2000). Critical role of nitric oxide in expression of porcine LH receptor at transcription and post-transcription levels. Exp. Clin. Endocrinol. Diabetes 108, 424–429.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Palmer, R. M. J. , Ashton, D. S. , and Moncada, S. (1988). Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333, 664–666.
Crossref | l
-arginine.&journal=Nature&volume=333&pages=664-666&publication_year=1988&author=R%2E%20M%2E%20J%2E%20Palmer&hl=en&doi=10.1038/333664A0" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed |

Parrish, J. J. , Susku-Parrish, J. , Winer, M. A. , and First, N. L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod. 38, 1171–1180.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Petr, J. , Rajmon, R. , Chmelíková, E. , Tománek, M. , Lánská, V. , Probánová, M. , and Jílek, F. (2006). Nitric-oxide-dependent activation of pig oocytes: the role of the cGMP-signalling pathway. Zygote 14, 9–16.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed |

Plachta, N. , Traister, A. , and Weil, M. P. (2003). Nitric oxide is involved in establishing the balance between cell cycle progression and cell death in the developing neural tube. Exp. Cell Res. 288, 354–362.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rettori, V. , and McCann, S. M. (1998). Role of nitric oxide and alcohol on gonadotropin release in vitro and in vivo. Ann. N. Y. Acad. Sci. 840, 185–193.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed |

Reyes, R. , Vázquez, M. L. S. , and Delgado, N. M. (2004). Detection and bioimaging of nitric oxide in bovine oocytes and sperm cells. Arch. Androl. 50, 303–309.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sengoku, K. , Takuma, N. , Horikawa, M. , Tsuchiya, K. , Komori, H. , Sharifa, D. , Tamate, K. , and Ishikawa, M. (2001). Requirement of nitric oxide for murine oocyte maturation, embryo development, and trophoblast outgrowth in vitro. Mol. Reprod. Dev. 58, 262–268.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Snyder, S. H. (1995). No endothelial NO. Nature 377, 196–197.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Soto, P. , Natzke, R. P. , and Hansen, P. J. (2003). Identification of possible mediators of embryonic mortality caused by mastitis: actions of lipopolysaccharide, prostaglandin F2α, and the nitric oxide generator, sodium nitroprusside dihydrate on oocyte maturation and embryonic development in cattle. Am. J. Reprod. Immunol. 50, 263–272.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takesue, K. , Hattori, M. A. , Nishida, N. , Kato, Y. , and Fujihara, N. (2001). Expression of endothelial nitric oxide synthase gene in cultured porcine granulose cells after FSH stimulation. J. Mol. Endocrinol. 26, 259–265.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takesue, K. , Tabata, S. , Sato, F. , and Hattori, M. (2003). Expression of nitric oxide synthase-3 in porcine oocytes obtained at different follicular development. J. Reprod. Dev. 49, 135–140.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tao, Y. , Xia, G. , Bo, S. , Zhou, B. , Zhang, M. , and Wang, F. (2004). Effects of NO and β-ME on pig oocyte development. Asian Australas. J. Anim. Sci. 17, 317–324.


Tao, J. Y. , Fu, Z. , Zhang, M. J. , Xia, G. , Lei, L. , and Wu, Z. L. (2005a). Nitric oxide influences the meiotic maturation of porcine oocytes cultured in hypoxanthine-supplemented medium. J. Anim. Physiol. Anim. Nutr. (Berl.) 89, 38–44.
Crossref | GoogleScholarGoogle Scholar |

Tao, Y. , Xie, H. , Hong, H. , Chen, X. , Jang, J. , and Xia, G. (2005b). Effects of nitric oxide synthase inhibitors on porcine oocyte meiotic maturation. Zygote 13, 1–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tao, Y. , Zhang, M. , Hong, H. , and Xia, G. (2005c). Regulation between nitric oxide and MAPK signal transduction in mammals. Prog. Nat. Sci. 15, 1–9.


Tesfaye, D. , Kadanga, A. , Rings, F. , Bauch, K. , and Jennen, D. , et al. (2006). The effect of nitric oxide inhibition and temporal expression patterns of the mRNA and protein products of nitric oxide synthase genes during in vitro development of bovine pre-implantation embryos. Reprod. Domest. Anim. 41, 501–509.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tranguch, S. , Steuerwald, N. , and Huet-Hudson, Y. M. (2003). Nitric oxide synthase and nitric oxide regulation of preimplantation of embryo development. Biol. Reprod. 68, 1538–1544.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vandaele, L. , Mateusen, B. , Maes, D. G. D. , de Kruif, A. , and Van Soom, A. (2007). Temporal detection of capase-3 and -7 in bovine in vitro-produced embryos of different developmental capacity. Reproduction 133, 709–718.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Viana, K. S. , Bussierre, M. C. , Matta, S. G. , Faes, M. R. , Carvalho, C. S. P. , and Quirino, C. R. (2007). Effect of sodium nitroprusside, a nitric oxide donor, on the in vitro maturation of bovine oocytes. Anim. Reprod. Sci. 102, 217–227.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Warzych, E. , Wrenzycki, C. , Peippo, J. , and Lechniak, D. (2007a). Maturation medium supplements affect transcript level of apoptosis and cell survival related genes in bovine blastocysts produced in vitro. Mol. Reprod. Dev. 74, 280–289.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Warzych, E. , Peippo, J. , Szydlowski, M. , and Lechniak, D. (2007b). Supplements to in vitro maturation media affect the production of bovine blastocysts and their apoptotic index but not the proportions of matured and apoptotic oocytes. Anim. Reprod. Sci. 97, 334–343.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhang, J. , Wang, S. , Kern, S. , Cui, X. , and Danner, R. L. (2007a). Nitric oxide down-regulates polo-like kinase 1 through a proximal promoter cell cycle gene homology region. J. Biol. Chem. 282, 1003–1009.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhang, M. , Xia, G. , Zhou, B. , and Wang, C. (2007b). Gonadotropin-controlled mammal oocyte meiotic resumption. Front. Biosci. 12, 282–296.
Crossref | GoogleScholarGoogle Scholar | PubMed |