Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Embryo-endometrial expression of leukemia inhibitory factor in the golden hamster (Mesocricetus auratus): increased expression during proestrous and window of implantation stages

Rajnish P. Rao A , Bernd Fischer B and Polani B. Seshagiri A C
+ Author Affiliations
- Author Affiliations

A Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India.

B Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Saale), D-06097, Germany.

C Corresponding author. Email: polani@mrdg.iisc.ernet.in

Reproduction, Fertility and Development 20(3) 440-449 https://doi.org/10.1071/RD07154
Submitted: 9 September 2007  Accepted: 20 December 2007   Published: 11 March 2008

Abstract

Leukemia inhibitory factor (LIF) is a pleiotropic IL-6 family cytokine and its maternal uterine expression is critical for mouse blastocyst implantation. In the golden hamster (Mesocricetus auratus), although the blastocyst hatching phenomenon is quite interesting and LIF is shown to regulate hatching, information is not available on the embryonic and uterine expression of LIF and hormonal regulation of LIF expression during the peri-implantation period. The present investigation is aimed at studying embryonic and uterine expression of LIF during preimplantation hamster development. We observed embryonic expression of LIF mRNA and protein in the 8-cell, morula and blastocyst stages. In cycling females, uterine LIF mRNA expression was maximal during the oestrogen-dominant phase of the oestrous cycle, i.e. proestrous stage. Interestingly, during pregnancy, both LIF mRNA and protein were highly upregulated on Days 3.5 and 4 (‘window of implantation’), implying a role for this cytokine in blastocyst hatching and implantation. Cell type-specific localisation of LIF mRNA and protein was observed predominantly in luminal epithelium and uterine glands with faint staining being detected in the stroma. The hamster uterus encoded a ~4.2 kb LIF transcript whose coding region, when cloned and sequenced, showed a high degree of identity to the murine cDNA counterpart. These data demonstrate that: (1) hamster preimplantation embryos show LIF mRNA and protein expression; (2) uterine expression of LIF mRNA and protein was dependent on elevated levels of circulating oestrogen, and (3) there is a possible functional association of LIF with the peri-implantation development in the golden hamster.

Additional keyword: peri-implantation embryo development.


Acknowledgements

The authors would like to thank Dr Nicos Nicola, WEHI, Australia, for providing the LIF cDNA construct; Mr. B. Sukesh and Ms. M. Kirstein for technical help; Drs. S. Tonack, P. Pocar, S. Hombach-Klonisch and T. Klonisch for their scientific and technical advice. Funding supports from DST-DAAD (D0209632); ICMR-Advanced Centre, DST and UGC, New Delhi are gratefully acknowledged.


References

Auernhammer, C. J. , and Melmed, S. (2000). Leukemia inhibitory factor: neuroimmune modulator of endocrine function. Endocr. Rev. 21((3)), 313–345.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bhatt, H. , Brunet, L. J. , and Stewart, C. L. (1991). Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc. Natl. Acad. Sci. USA 88((24)), 11408–11412.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cheng, T. C. , Huang, C. C. , Chen, C. I. , Liu, C. H. , Hsieh, Y. S. , Huang, C. Y. , Lee, M. S. , and Liu, J. Y. (2004). Leukemia inhibitory factor antisense oligonucleotide inhibits the development of murine embryos at preimplantation stages. Biol. Reprod. 70((5)), 1270–1276.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Devgan, V. , and Seshagiri, P. B. (2003). Successful development of viable blastocysts from enhanced green fluorescent protein transgene-microinjected mouse embryos: comparison of culture media. Mol. Reprod. Dev. 65((3)), 269–277.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dimitriadis, E. , Stoikos, C. , Stafford-Bell, M. , Clark, I. , Paiva, P. , Kovacs, G. , and Salamonsen, L. A. (2006). Interleukin-11, IL-11 receptor alpha and leukemia inhibitory factor are dysregulated in endometrium of infertile women with endometriosis during the implantation window. J. Reprod. Immunol. 69((1)), 53–64.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gearing, D. P. , King, J. A. , and Gough, N. M. (1988). Complete sequence of murine myeloid leukemia inhibitory factor (LIF). Nucleic Acids Res. 16((20)), 9857.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gearing, D. P. , Comeau, M. R. , Friend, D. J. , Gimpel, S. D. , and Thut, C. J. , et al. (1992). The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science 255((5050)), 1434–1437.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Giess, R. , Tanasescu, I. , Steck, T. , and Sendtner, M. (1999). Leukaemia inhibitory factor gene mutations in infertile women. Mol. Hum. Reprod. 5((6)), 581–586.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gonzales, D. S. , and Bavister, B. D. (1995). Zona pellucida escape by hamster blastocysts in vitro is delayed and morphologically different compared with zona escape in vivo. Biol. Reprod. 52((2)), 470–480.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Harper, M. J. , Dowd, D. , and Elliott, A. S. (1969). Implantation and embryonic development in the ovariectomized-adrenalectomized hamster. Biol. Reprod. 1((3)), 253–257.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Harvey, M. B. , Leco, K. J. , Arcellana-Panlilio, M. Y. , Zhang, X. , Edwards, D. R. , and Schultz, G. A. (1995). Proteinase expression in early mouse embryos is regulated by leukaemia inhibitory factor and epidermal growth factor. Development 121((4)), 1005–1014.
PubMed |

Jayaprakash, D. , Satish, K. S. , Ramachandra, S. G. , Ramesh, V. , and Seshagiri, P. B. (1997). Successful recovery of preimplantation embryos by nonsurgical uterine flushing in the bonnet monkey. Theriogenology 47, 1019–1026.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kauma, S. W. (2000). Cytokines in implantation. J. Reprod. Fertil. Suppl. 55, 31–42.
PubMed |

Lavranos, T. C. , Rathjen, P. D. , and Seamark, R. F. (1995). Trophic effects of myeloid leukaemia inhibitory factor (LIF) on mouse embryos. J. Reprod. Fertil. 105((2)), 331–338.
PubMed |

Mishra, A. , and Seshagiri, P. B. (1998). Successful development in vitro of hamster 8-cell embryos to ‘zona-escaped’ and attached blastocysts: assessment of quality and trophoblast outgrowth. Reprod. Fertil. Dev. 10((5)), 413–420.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mishra, A. , and Seshagiri, P. B. (2000). Evidence for the involvement of a species-specific embryonic protease in zona escape of hamster blastocysts. Mol. Hum. Reprod. 6((11)), 1005–1012.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rodriguez, C. I. , Cheng, J. G. , Liu, L. , and Stewart, C. L. (2004). Cochlin, a secreted von Willebrand factor type A domain-containing factor, is regulated by leukemia inhibitory factor in the uterus at the time of embryo implantation. Endocrinology 145((3)), 1410–1418.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Roy, S. K. , and Kole, A. R. (1995). Transforming growth factor-beta receptor type II expression in the hamster ovary: cellular site(s), biochemical properties, and hormonal regulation. Endocrinology 136((10)), 4610–4620.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sargent, I. L. , Martin, K. L. , and Barlow, D. H. (1998). The use of recombinant growth factors to promote human embryo development in serum-free medium. Hum. Reprod. 13((Suppl. 4)), 239–248.
PubMed |

Seshagiri, P. B. , and Bavister, B. D. (1990). Assessment of hamster blastocysts derived from eight-cell embryos cultured in hamster embryo culture medium-2 (HECM-2): cell numbers and viability following embryo transfer. J. Vitro Fert. Embryo Transf. 7((5)), 229–235.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Seshagiri, P. B. , Mishra, A. , Ramesh, G. , and Rao, R. P. (2002). Regulation of peri-attachment embryo development in the golden hamster: role of growth factors. J. Reprod. Immunol. 53((1–2)), 203–213.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sharkey, A. M. , Dellow, K. , Blayney, M. , Macnamee, M. , Charnock-Jones, S. , and Smith, S. K. (1995). Stage-specific expression of cytokine and receptor messenger ribonucleic acids in human preimplantation embryos. Biol. Reprod. 53((4)), 974–981.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shen, M. M. , and Leder, P. (1992). Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc. Natl. Acad. Sci. USA 89((17)), 8240–8244.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sherwin, J. R. , Freeman, T. C. , Stephens, R. J. , Kimber, S. , Smith, A. G. , Chambers, I. , Smith, S. K. , and Sharkey, A. M. (2004). Identification of genes regulated by leukemia inhibitory factor in the mouse uterus at the time of implantation. Mol. Endocrinol. 18((9)), 2185–2195.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Simon, C. , Gimeno, M. J. , Mercader, A. , Frances, A. , Garcia Velasco, J. , Remohi, J. , Polan, M. L. , and Pellicer, A. (1996). Cytokines-adhesion molecules-invasive proteinases. The missing paracrine/autocrine link in embryonic implantation? Mol. Hum. Reprod. 2((6)), 405–424.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Song, H. , Lim, H. , Das, S. K. , Paria, B. C. , and Dey, S. K. (2000). Dysregulation of EGF family of growth factors and COX-2 in the uterus during the preattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF-deficient mice. Mol. Endocrinol. 14((8)), 1147–1161.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stahl, J. , Gearing, D. P. , Willson, T. A. , Brown, M. A. , King, J. A. , and Gough, N. M. (1990). Structural organization of the genes for murine and human leukemia inhibitory factor. Evolutionary conservation of coding and non-coding regions. J. Biol. Chem. 265((15)), 8833–8841.
PubMed |

Stewart, C. L. , Kaspar, P. , Brunet, L. J. , Bhatt, H. , Gadi, I. , Kontgen, F. , and Abbondanzo, S. J. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359((6390)), 76–79.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takeda, K. , Noguchi, K. , Shi, W. , Tanaka, T. , Matsumoto, M. , Yoshida, N. , Kishimoto, T. , and Akira, S. (1997). Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA 94((8)), 3801–3804.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ware, C. B. , Horowitz, M. C. , Renshaw, B. R. , Hunt, J. S. , and Liggitt, D. , et al. (1995). Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121((5)), 1283–1299.
PubMed |

Yang, Z. M. , Le, S. P. , Chen, D. B. , Cota, J. , Siero, V. , Yasukawa, K. , and Harper, M. J. (1995). Leukemia inhibitory factor, LIF receptor, and gp130 in the mouse uterus during early pregnancy. Mol. Reprod. Dev. 42((4)), 407–414.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yang, Z. M. , Chen, D. B. , Le, S. P. , and Harper, M. J. (1996). Differential hormonal regulation of leukemia inhibitory factor (LIF) in rabbit and mouse uterus. Mol. Reprod. Dev. 43, 470–476.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yoshida, K. , Taga, T. , Saito, M. , Suematsu, S. , and Kumanogoh, A. , et al. (1996). Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc. Natl. Acad. Sci. USA 93((1)), 407–411.
Crossref | GoogleScholarGoogle Scholar | PubMed |