Foreword: A perspective on the role of emerging technologies for the propagation of companion animals, non-domestic and endangered species
Monique C. J. Paris A B , Gabriela F. Mastromonaco C , Damien B. B. P. Paris B and Rebecca L. Krisher D EA Institute for Breeding Rare and Endangered African Mammals (IBREAM), Edinburgh, Scotland, UK.
B Department of Equine Sciences, Faculty of Veterinary Medicine, Universiteit Utrecht, Utrecht, The Netherlands.
C Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
D Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
E Corresponding author. Email: rkrisher@purdue.edu
Reproduction, Fertility and Development 19(6) iii-vii https://doi.org/10.1071/RD07091
Submitted: 11 June 2007 Accepted: 11 June 2007 Published: 2 August 2007
Abstract
Assisted reproductive technologies (ART) have been used successfully in humans, domestic and laboratory species for many years. In contrast, our limited knowledge of basic reproductive physiology has restricted the application of ART in companion animal, non-domestic and endangered species (CANDES). Although there are numerous benefits, and in some cases a necessity, for applying ART for the reproductive and genetic management of CANDES, the challenges encountered with even the most basic procedures have limited the rate of progress. In this foreword we discuss the status of conventional ART, such as artificial insemination and in vitro fertilisation, as well as their benefits and inherent difficulties when applied to CANDES. It is upon these techniques, and ultimately our knowledge of basic reproductive physiology, that the success of emerging technologies, such as those described in this special issue, are dependent for success.
Allen, W. R. (2005). The development and application of the modern reproductive technologies to horse breeding. Reprod. Domest. Anim. 40, 310–329.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ballou, J. D. (1992). Potential contribution of cryopreserved germ plasm to the preservation of genetic diversity and conservation of endangered species in captivity. Cryobiology 29, 19–25.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Brown, J. L. , Wildt, D. E. , Wielebnowski, N. , Goodrowe, K. L. , Graham, L. H. , Wells, S. , and Howard, J. G. (1996). Reproductive activity in captive female cheetahs (Acinonyx jubatus) assessed by faecal steroids. J. Reprod. Fertil. 106, 337–346.
| PubMed |
Herrick, J. , Leiske, K. , Magarey, G. , and Swanson, W. (2006b). Basal seminal traits and in vitro fertilization in the sand cat (Felis margarita). Reprod. Fertil. Dev. 18, 218–219.[Abstract]
| Crossref | GoogleScholarGoogle Scholar |
Iguer-Ouada, M. , and Verstegen, J. P. (2001). Long-term preservation of chilled canine semen: effect of commercial and laboratory prepared extenders. Theriogenology 55, 671–684.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Loskutoff, N. M. , Raphael, B. L. , Nemec, L. A. , Wolfe, B. A. , Howard, J. G. , and Kraemer, D. C. (1990). Reproductive anatomy, manipulation of ovarian activity and non-surgical embryo recovery in suni (Neotragus moschatus zuluensis). J. Reprod. Fertil. 88, 521–532.
| PubMed |
Pope, C. E. , Gomez, M. C. , and Dresser, B. L. (2006). In vitro embryo production and embryo transfer in domestic and non-domestic cats. Theriogenology 66, 1518–1524.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Pukazhenthi, B. S. , and Wildt, D. E. (2004). Which reproductive technologies are most relevant to studying, managing and conserving wildlife? Reprod. Fertil. Dev. 16, 33–46.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Rudd, C. D. (1994). Sexual behaviour of male and female tammar wallabies (Macropus eugenii) at post-partum oestrus. J. Zool. 232, 151–162.
Schwarzenberger, F. , Francke, R. , and Goltenboth, R. (1993). Concentrations of faecal immunoreactive progestagen metabolites during the oestrous cycle and pregnancy in the black rhinoceros (Diceros bicornis michaeli). J. Reprod. Fertil. 98, 285–291.
| PubMed |
Schwarzenberger, F. , Walzer, C. , Tomasova, K. , Vahala, J. , Meister, J. , Goodrowe, K. L. , Zima, J. , Strauss, G. , and Lynch, M. (1998). Fecal progesterone metabolite analysis for non-invasive monitoring of reproductive function in the white rhinoceros (Ceratotherium simum). Anim. Reprod. Sci. 53, 173–190.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Songsasen, N. , and Wildt, D. E. (2007). Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog. Anim. Reprod. Sci. 98, 2–22.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Songsasen, N. , Rodden, M. , Brown, J. L. , and Wildt, D. E. (2006). Patterns of fecal gonadal hormone metabolites in the maned wolf (Chrysocyon brachyurus). Theriogenology 66, 1743–1750.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Stout, T. A. E. (2006). Equine embryo transfer: review of developing potential. Equine Vet. J. 38, 467–478.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Thompson, K. V. , and Monfort, S. L. (1999). Synchronization of oestrous cycles in sable antelope. Anim. Reprod. Sci. 57, 185–197.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Tremoleda, J. L. , Stout, T. A. E. , Lagutina, I. , Lazzari, G. , Bevers, M. M. , Colenbrander, B. , and Galli, C. (2003). Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation. Biol. Reprod. 69, 1895–1906.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Walker, S. L. , Waddell, W. T. , and Goodrowe, K. L. (2002). Reproductive endocrine patterns in captive female and male red wolves (Canis rufus) assessed by fecal and serum hormone analysis. Zoo Biol. 21, 321–335.
| Crossref | GoogleScholarGoogle Scholar |
Wildt, D. E. , Ellis, S. , and Howard, J. G. (2001). Linkage of reproductive sciences: from ‘quick fix’ to ‘integrated’ conservation. J. Reprod. Fertil. Suppl. 57, 295–307.
| PubMed |
Wildt, D. E. (1992). Genetic resource banks for conserving wildlife species: justification, examples and becoming organized on a global basis. Anim. Reprod. Sci. 28, 247–257.
| Crossref | GoogleScholarGoogle Scholar |
Woods, E. J. , Benson, J. D. , Agca, Y. , and Critser, J. K. (2004). Fundamental cryobiology of reproductive cells and tissues. Cryobiology 48, 146–156.
| Crossref | GoogleScholarGoogle Scholar | PubMed |