Society for Reproductive Biology Founders' Lecture 2007 Insights into germ cell biology: from the bench to the clinic
Angshumoy Roy A and Martin M. Matzuk A B C DA Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
B Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
C Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
D Corresponding author. Email: mmatzuk@bcm.tmc.edu
Reproduction, Fertility and Development 19(7) 783-791 https://doi.org/10.1071/RD07090
Submitted: 11 June 2007 Accepted: 18 July 2007 Published: 8 August 2007
Abstract
The germline is unique among tissues in being the only lineage that is transmitted through generations. The gonadal somatic cells that interact with male and female germ cells are equally important for their juxtacrine and paracrine signalling pathways that lead to the formation of functionally mature gametes and healthy progeny. The present review summarises exciting new studies that our group and others have achieved at the frontier of male and female germ cell biology and in studying transforming growth factor-β signalling pathways in oocyte–somatic cell interactions and gonadal growth and differentiation. In the process, we have produced over 70 transgenic and knockout models to study reproduction in vivo. These models have helped us identify novel and unexplored areas of germ cell biology and translate this work into the fertility clinic.
Acknowledgements
Research in the Matzuk laboratory on reproduction and TGF-β superfamily signalling pathways has been supported by National Institutes of Health grants CA60651, HD32067, HD33438 and HD42500, and the Specialised Cooperative Centers Program in Reproduction and Infertility Research (U54 HD07495) and National Institutes of Health Infertility Center (PO1 HD36289).
Arnold, S. J. , Maretto, S. , Islam, A. , Bikoff, E. K. , and Robertson, E. J. (2006). Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo. Dev. Biol. 296, 104–118.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Platts, A. E. , Dix, D. J. , Chemes, H. E. , Thompson, K. E. , and Goodrich, R. , et al. (2007). Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Hum. Mol. Genet. 16, 763–773.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Rajkovic, A. , Pangas, S. A. , Ballow, D. , Suzumori, N. , and Matzuk, M. M. (2004). NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305, 1157–1159.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ren, H. P. , and Russell, L. D. (1991). Clonal development of interconnected germ cells in the rat and its relationship to the segmental and subsegmental organization of spermatogenesis. Am. J. Anat. 192, 121–128.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Roberts, V. J. , and Barth, S. L. (1994). Expression of messenger ribonucleic acids encoding the inhibin/activin system during mid- and late-gestation rat embryogenesis. Endocrinology 134, 914–923.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Robinson, G. W. , and Hennighausen, L. (1997). Inhibins and activins regulate mammary epithelial cell differentiation through mesenchymal–epithelial interactions. Development 124, 2701–2708.
| PubMed |
Roy, A. , and Matzuk, M. M. (2006). Deconstructing mammalian reproduction: using knockouts to define fertility pathways. Reproduction 131, 207–219.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Salustri, A. , Yanagishita, M. , and Hascall, V. C. (1990). Mouse oocytes regulate hyaluronic acid synthesis and mucification by FSH-stimulated cumulus cells. Dev. Biol. 138, 26–32.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Salustri, A. , Garlanda, C. , Hirsch, E. , De Acetis, M. , and Maccagno, A. , et al. (2004). PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 131, 1577–1586.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Schrewe, H. , Gendron-Maguire, M. , Harbison, M. L. , and Gridley, T. (1994). Mice homozygous for a null mutation of activin βB are viable and fertile. Mech. Dev. 47, 43–51.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Su, Y. Q. , Wu, X. , O’Brien, M. J. , Pendola, F. L. , Denegre, J. N. , Matzuk, M. M. , and Eppig, J. J. (2004). Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte–cumulus cell complex in mice: genetic evidence for an oocyte–granulosa cell regulatory loop. Dev. Biol. 276, 64–73.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sugiura, K. , Su, Y. Q. , Diaz, F. J. , Pangas, S. A. , Sharma, S. , Wigglesworth, K. , O’Brien, M. J. , Matzuk, M. M. , Shimasaki, S. , and Eppig, J. J. (2007). Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134, 2593–2603.
| PubMed |
Tremblay, K. D. , Dunn, N. R. , and Robertson, E. J. (2001). Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128, 3609–3621.
| PubMed |
Varani, S. , Elvin, J. A. , Yan, C. , DeMayo, J. , DeMayo, F. J. , Horton, H. F. , Byrne, M. C. , and Matzuk, M. M. (2002). Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol. Endocrinol. 16, 1154–1167.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Vassalli, A. , Matzuk, M. M. , Gardner, H. A. , Lee, K. F. , and Jaenisch, R. (1994). Activin/inhibin beta B subunit gene disruption leads to defects in eyelid development and female reproduction. GenesDev. 8, 414–427.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wang, S. , Zheng, H. , Esaki, Y. , Kelly, F. , and Yan, W. (2006). Cullin3 is a KLHL10-interacting protein preferentially expressed during late spermiogenesis. Biol. Reprod. 74, 102–108.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wu, M. H. , Rajkovic, A. , Burns, K. H. , Yan, W. , Lin, Y. N. , and Matzuk, M. M. (2003). Sequence and expression of testis-expressed gene 14 (Tex14): a gene encoding a protein kinase preferentially expressed during spermatogenesis. GeneExpr. Patterns 3, 231–236.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wykes, S. M. , Visscher, D. W. , and Krawetz, S. A. (1997). Haploid transcripts persist in mature human spermatozoa. Mol. Hum. Reprod. 3, 15–19.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Yan, C. , Wang, P. , DeMayo, J. , DeMayo, F. J. , and Elvin, J. A. , et al. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15, 854–866.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Yan, W. , Ma, L. , Burns, K. H. , and Matzuk, M. M. (2004). Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice. Proc. NatlAcad. Sci. USA 101, 7793–7798.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Yatsenko, A. N. , Roy, A. , Chen, R. , Ma, L. , Murthy, L. J. , Yan, W. , Lamb, D. J. , and Matzuk, M. M. (2006). Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum. Mol. Genet. 15, 3411–3419.
| Crossref | GoogleScholarGoogle Scholar | PubMed |