Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Transgenic farm animals: an update

Heiner Niemann A B and Wilfried A. Kues A
+ Author Affiliations
- Author Affiliations

A Department of Biotechnology, Institute for Animal Breeding, Mariensee, 31535 Neustadt, Germany.

B Corresponding author. Email: niemann@tzv.fal.de

Reproduction, Fertility and Development 19(6) 762-770 https://doi.org/10.1071/RD07040
Submitted: 26 February 2007  Accepted: 16 April 2007   Published: 2 August 2007

Abstract

The first transgenic livestock species were reported in 1985. Since then microinjection of foreign DNA into pronuclei of zygotes has been the method of choice. It is now being replaced by more efficient protocols based on somatic nuclear transfer that also permit targeted genetic modifications. Lentiviral vectors and small interfering ribonucleic acid (siRNA) technology are also becoming important tools for transgenesis. In 2006 the European Medicines Agency (EMEA) gave green light for the commercialistion of the first recombinant protein produced in the milk of transgenic animals. Recombinant antithrombin III will be launched as ATryn for prophylactic treatment of patients with congenital antithrombin deficiency. This important milestone will boost the research activities in farm animal transgenesis. Recent developments in transgenic techniques of farm animals are discussed in this review.

Additional keywords: conditional transgene expression, gene pharming, lentiviral mediated transgenesis, pronuclear DNA injection, RNA interference, somatic cloning, xenotransplantation.


Acknowledgements

The financial support by a grant from the DFG (FOR 535) is gratefully acknowledged. This review contains in parts data from Niemann, H., Kues, W. A., and Carnwath, J. W. (2005). Transgenic farm animals: present and future. Rev. Sci. Tech. OIE 24, 285–298.


References

Bach, F. H. (1998). Xenotransplantation: problems and prospects. Annu. Rev. Med. 49, 301–310.
Crossref | GoogleScholarGoogle Scholar | PubMed | Echelard Y., Ziomek C., and Meade H. (2006). Production of recombinant therapeutic proteins in the milk of transgenic animals. BioPharm Intern. 2 (August 2006). http://www.biopharminternational.com/biopharm/content. pp. 1–7.

Gandolfi, F. (1998). Spermatozoa, DNA binding and transgenic animals. Transgenic Res. 7, 147–155.
Crossref | GoogleScholarGoogle Scholar | PubMed | Meade H. M., Echelard Y., Ziomek C. A., Young M. W., Harvey M., Cloe E. S., Groet S., Smith T. E., and Curling J. M. (1999). Expression of recombinant proteins in the milk of transgenic animals. In ‘Gene Expression Systems. Using Nature for the Art of Expression’. (Eds J. M. Fernandez and J. P. Hoeffler.) pp. 399–427. (Academic Press: San Diego, CA.)

Müller, M. , Brenig, B. , Winnacker, E. L. , and Brem, G. (1992). Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein which confers resistance to influenza virus infection. Gene 121, 263–270.
Crossref | GoogleScholarGoogle Scholar | PubMed | Nottle M. B., Nagashima H., Verma P. J., Du Z. T., Grupen C. G., et al. (1999). Production and analysis of transgenic pigs containing a metallothionein porcine growth hormon gene construct. In ‘Transgenic Animals in Agriculture’. (Eds J. D. Murray, G. B. Anderson, A. M. Oberbauer and M. M. McGloughlin.) pp. 145–156. (CABI Publishing: New York.)

Panarace, M. , Agüero, J. I. , Garrote, M. , Jauregui, G. , and Segovia, A. , et al. (2006). How healthy are clones and their progeny: 5 years of field experience. Theriogenology 67, 142–151.
Crossref | GoogleScholarGoogle Scholar | PubMed | Pursel V. G., Wall R. J., Mitchell A. D., Elsasser T. H., Solomon M. B., Coleman M. E., Mayo F., and Schwartz R. J. (1999). Expression of insulin-like growth factor-1 in skeletal muscle of transgenic pigs. In ‘Transgenic Animals in Agriculture’. (Eds J. D. Murray, G. B. Anderson, A. M. Oberbauer and M. M. McGloughlin.) pp. 131–144. (CABI Publishing: New York.)

Reh, W. A. , Maga, E. A. , Collette, N. M. , Moyer, A. , Conrad-Brink, J. S. , Taylor, S. J. , DePeters, E. J. , Oppenheim, S. , Rowe, J. D. , BonDurant, R. H. , Anderson, G. B. , and Murray, J. D. (2004). Hot topic: using a stearoyl-CoA desaturase transgene to alter milk fatty acid composition. J. Dairy Sci. 87, 3510–3514.
PubMed | Squires E. J. (1999). Status of sperm-mediated delivery methods for gene transfer. In ‘Transgenic Animals in Agriculture’. (Eds J. D. Murray, G. B. Anderson, A. M. Oberbauer and M. M. McGloughlin.) pp. 87–96. (CABI Publishing: New York.)

Switzer, W. M. , Michler, R. E. , Shangmugam, V. , Matthews, A. , and Hussain, A. I. , et al. (2001). Lack of cross-species transmission of porcine endogenous retrovirus infection to nonhuman primate recipients of porcine cells, tissues and organs. Transplantation 71, 959–965.
Crossref | GoogleScholarGoogle Scholar | PubMed | USA Food and Drug Administration (2003). FDA statement regarding glofish. http://www.fda.gov/bbs/topics/NEWS/2003/NEW00994.html [verified May 2007].

Van den Hout, J. M. , Reuser, A. J. , de Klerk, J. B. , Arts, W. F. , Smeitink, J. A. , and Van der Ploeg, A. T. (2001). Enzyme therapy for Pompe disease with recombinant human α-glucosidase from rabbit milk. J. Inherit. Metab. Dis. 24, 266–274.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van Reenen, C. G. , Meuwissen, T. H. E. , Hopster, H. , Oldenbroek, K. , Kruip, T. H. , and Blokhuis, H. J. (2001). Transgenesis may affect farm animal welfare: a case for systemic risk assessment. J. Anim. Sci. 79, 1763–1769.
PubMed |

Walker, S. C. , Shin, T. , Zaunbrecher, G. M. , Romario, J. E. , Johnson, G. A. , Bazer, F. W. , and Piedrahita, J. A. (2002). A highly efficient method for porcine cloning by nuclear transfer using in vitro matured oocytes. Cloning Stem Cells 4, 105–112.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wall, R. J. , Powell, A. , Paape, M. J. , Kerr, D. E. , Bannermann, D. D. , Pursel, V. G. , Wells, K. D. , Talbot, N. , and Hawk, H. (2005). Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat. Biotechnol. 23, 445–451.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Willadsen, S. M. (1986). Nuclear transplantation in sheep embryos. Nature 320, 63–65.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilmut, I. , Schnieke, A. E. , McWhir, J. , Kind, A. J. , and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Whitelaw, C. B. , Radcliffe, P. A. , Ritchie, W. A. , Carlisle, A. , Ellard, F. M. , Pena, R. N. , Rowe, J. , Clark, A. J. , King, T. J. , and Mitrophanous, K. A. (2004). Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Lett. 571, 233–236.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wheeler, M. B. , Bleck, G. T. , and Donovan, S. M. (2001). Transgenic alteration of sow milk to improve piglet growth and health. Reproduction 58((Suppl.)), 313–324.
PubMed |

Yadav, P. S. , Kues, W. A. , Hermann, D. , Carnwath, J. W. , and Niemann, H. (2005). Bovine ICM derived cells expressed the Oct4 ortholog. Mol. Reprod. Dev. 72, 182–190.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yamada, K. , Yazawa, K. , Shimizu, A. , Iwanaga, T. , and Hisashi, Y. , et al. (2005). Marked prolongation of porcine renal xenograft survival in baboons through the use of α1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat. Med. 11, 32–34.
Crossref | GoogleScholarGoogle Scholar | PubMed |