Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Human embryonic stem cells: challenges and opportunities

Steven L. Stice A C , Nolan L. Boyd A , Sujoy K. Dhara A , Brian A. Gerwe A , David W. Machacek A and Soojung Shin B
+ Author Affiliations
- Author Affiliations

A Regenerative Bioscience Center, ADS Department, University of Georgia, Athens, GA 30606, USA.

B Invitrogen Corporation, Carlsbad, CA 92008, USA.

C Corresponding author. Email: sstice@arches.uga.edu

Reproduction, Fertility and Development 18(8) 839-846 https://doi.org/10.1071/RD06113
Submitted: 24 April 2006  Accepted: 4 September 2006   Published: 22 November 2006

Abstract

Human and non-human primate embryonic stem (ES) cells are invaluable resources for developmental studies, pharmaceutical research and a better understanding of human disease and replacement therapies. In 1998, subsequent to the establishment of the first monkey ES cell line in 1995, the first human ES cell line was developed. Later, three of the National Institute of Health (NIH) lines (BG01, BG02 and BG03) were derived from embryos that would have been discarded because of their poor quality. A major challenge to research in this area is maintaining the unique characteristics and a normal karyotype in the NIH-registered human ES cell lines. A normal karyotype can be maintained under certain culture conditions. In addition, a major goal in stem cell research is to direct ES cells towards a limited cell fate, with research progressing towards the derivation of a variety of cell types. We and others have built on findings in vertebrate (frog, chicken and mouse) neural development and from mouse ES cell research to derive neural stem cells from human ES cells. We have directed these derived human neural stem cells to differentiate into motoneurons using a combination of developmental cues (growth factors) that are spatially and temporally defined. These and other human ES cell derivatives will be used to screen new compounds and develop innovative cell therapies for degenerative diseases.

Extra keywords: culture, karyotype, neural differentiation.


References

Andrews, P. W. , Casper, J. , Damjanov, I. , Duggan-Keen, M. , and Giwercman, A. , et al. (1996). Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumours. Int. J. Cancer 66, 806–816.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Andrews, P. W. , Benvenisty, N. , McKay, R. , Pera, M. F. , Rossant, J. , Semb, H. , Stacey, G. N. , and Initia, S. C. I. S. C. (2005). The International Stem Cell initiative: toward benchmarks for human embryonic stem cell research. Nat. Biotechnol. 23, 795–797.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Brimble, S. N. , Zeng, X. M. , Weiler, D. A. , Luo, Y. , and Liu, Y. , et al. (2004). Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev. 13, 585–597.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Buzzard, J. J. , Gough, N. M. , Crook, J. M. , and Colman, A. (2004). Karyotype of human ES cells during extended culture. Nat. Biotechnol. 22, 381–382.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cooper, S. , Pera, M. F. , Bennett, W. , and Finch, J. T. (1992). A novel keratan sulfate proteoglycan from a human embryonal carcinoma cell-line. Biochem. J. 286, 959–966.
PubMed |

Hay, D. C. , Sutherland, L. , Clark, J. , and Burdon, T. (2004). Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22, 225–235.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Horton, C. , and Maden, M. (1995). Endogenous distribution of retinoids during normal development and teratogenesis in the mouse embryo. Dev. Dyn. 202, 312–323.
PubMed |

Kannagi, R. , Cochran, N. A. , Ishigami, F. , Hakomori, S. , Andrews, P. W. , Knowles, B. B. , and Solter, D. (1983a). Stage-specific embryonic antigens (Ssea-3 and Ssea-4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 2, 2355–2361.
PubMed |

Kannagi, R. , Levery, S. B. , Ishigami, F. , Hakomori, S. , Shevinsky, L. H. , Knowles, B. B. , and Solter, D. (1983b). New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J. Biol. Chem. 258, 8934–8942.
PubMed |

Kessaris, N. , Jamen, F. , Rubin, L. L. , and Richardson, W. D. (2004). Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 131, 1289–1298.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Li, X.-J. , Du, Z.-W. , Zarnowska, E. D. , Pankratz, M. , Hansen, L. O. , Pearce, R. A. , and Zhang, S.-C. (2005). Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215–221.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lin, T. , Chao, C. , Saito, S. , Mazur, S. J. , Murphy, M. E. , Appella, E. , and Xu, Y. (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7, 165–171.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liu, Y. , Wu, Y. , Lee, J. C. , Xue, H. , Pevny, L. H. , Kaprielian, Z. , and Rao, M. S. (2002). Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia 40, 25–43.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mayer-Proschel, M. (2002). Human neural precursor cells – an in vitro characterization. Clin. Neurosci. Res. 2, 58–69.
Crossref | GoogleScholarGoogle Scholar |

Mitalipova, M. , Calhoun, J. , Shin, S. , Wininger, D. , and Schulz, T. , et al. (2003). Human embryonic stem cell lines derived from discarded embryos. Stem Cells 21, 521–526.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mitalipova, M. M. , Rao, R. R. , Hoyer, D. M. , Johnson, J. A. , Meisner, L. F. , Jones, K. L. , Dalton, S. , and Stice, S. L. (2005). Preserving the genetic integrity of human embryonic stem cells. Nat. Biotechnol. 23, 19–20.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Niwa, H. (2001). Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct. Funct. 26, 137–148.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Niwa, H. , Miyazaki, J. , and Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Novitch, B. G. , Wichterle, H. , Jessell, T. M. , and Sockanathan, S. (2003). A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron 40, 81–95.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pera, M. F. , Reubinoff, B. , and Trounson, A. (2000). Human embryonic stem cells. J. Cell Sci. 113, 5–10.
PubMed |

Pera, M. F. , Andrade, J. , Houssami, S. , Reubinoff, B. , Trounson, A. , Stanley, E. G. , Ward-van Oostwaard, D. , and Mummery, C. (2004). Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci. 117, 1269–1280.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reubinoff, B. E. , Pera, M. F. , Fong, C. Y. , Trounson, A. , and Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reubinoff, B. E. , Itsykson, P. , Turetsky, T. , Pera, M. F. , Reinhartz, E. , Itzik, A. , and Ben-Hur, T. (2001). Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19, 1134–1140.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rosler, E. S. , Fisk, G. J. , Ares, X. , Irving, J. , Miura, T. , Rao, M. S. , and Carpenter, M. K. (2004). Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229, 259–274.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rosner, M. H. , Vigano, M. A. , Ozato, K. , Timmons, P. M. , Poirier, F. , Rigby, P. W. J. , and Staudt, L. M. (1990). A Pou-domain transcription factor in early stem-cells and germ-cells of the mammalian embryo. Nature 345, 686–692.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sanai, N. , Alvarez-Buylla, A. , and Berger, M. S. (2005). Mechanisms of disease: Neural stem cells and the origin of gliomas. N. Engl. J. Med. 353, 811–822.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shamblott, M. J. , Axelman, J. , Wang, S. P. , Bugg, E. M. , Littlefield, J. W. , Donovan, P. J. , Blumenthal, P. D. , Huggins, G. R. , and Gearhart, J. D. (1998). Derivation of pluripotent stem cells horn cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13 726–13 731.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shin, S. , Dalton, S. , and Stice, S. L. (2005). Human motor neuron differentiation from human embryonic stem cells. Stem Cells Dev. 14, 266–269.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shin, S. , Mitalipova, M. , Noggle, S. , Tibbitts, D. , Venable, A. , Rao, R. , and Stice, S. L. (2006). Long-term proliferation of human embryonic stem cell-derived neuroepithelial cells using defined adherent culture conditions. Stem Cells 24, 125–138.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thomson, J. A. , and Marshall, V. S. (1998). Primate embryonic stem cells. Curr. Top. Dev. Biol. 38, 133–165.
PubMed |

Thomson, J. A. , Kalishman, J. , Golos, T. G. , Durning, M. , Harris, C. P. , Becker, R. A. , and Hearn, J. P. (1995). Isolation of a primate embryonic stem-cell line. Proc. Natl Acad. Sci. USA 92, 7844–7848.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thomson, J. A. , Kalishman, J. , Golos, T. G. , Durning, M. , Harris, C. P. , and Hearn, J. P. (1996). Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55, 254–259.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thomson, J. A. , Itskovitz-Eldor, J. , Shapiro, S. S. , Waknitz, M. A. , Swiergiel, J. J. , Marshall, V. S. , and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tropepe, V. , Hitoshi, S. , Sirard, C. , Mak, T. W. , Rossant, J. , and van der Kooy, D. (2001). Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilson, L. , and Maden, M. (2005). The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev. Biol. 282, 1–13.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilson, S. I. , and Edlund, T. (2001). Neural induction: toward a unifying mechanism. Nat. Neurosci. 4, 1161–1168.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Xu, C. H. , Inokuma, M. S. , Denham, J. , Golds, K. , Kundu, P. , Gold, J. D. , and Carpenter, M. K. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ying, Q. L. , Stavridis, M. , Griffiths, D. , Li, M. , and Smith, A. (2003). Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186.
Crossref | GoogleScholarGoogle Scholar | PubMed |