Genetic modification of somatic cells for producing animal models and for cellular transplantation
Robert B. NorgrenDepartment of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 85805 Nebraska Medical Center, Omaha, NE 68198-5805, USA. Email: rnorgren@unmc.edu
Reproduction, Fertility and Development 18(8) 811-815 https://doi.org/10.1071/RD06074
Submitted: 3 June 2006 Accepted: 4 September 2006 Published: 22 November 2006
Abstract
Great progress has been made in two technologies related to biomedical research: (1) manipulating the genomes of cells; and (2) inducing stem cells in culture to differentiate into potentially useful cell types. These technologies can be used to create animal models of human disease and to provide cells for transplantation to ameliorate human disease. Both embryonic stem cells and adult stem cells have been studied for these purposes. Genetically modified somatic cells provide another source of cells for creating animal models and for cellular transplantation.
Extra keywords: dedifferentiation, hypoxanthine guanine phosphoribosyl transferase, Lesch–Nyhan’s disease, non-human primate, stem gene targeting.
Akimenko, M. A. , Mari-Beffa, M. , Becerra, J. , and Geraudie, J. (2003). Old questions, new tools, and some answers to the mystery of fin regeneration. Dev. Dyn. 226, 190–201.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Alberio, R. , Johnson, A. D. , Stick, R. , and Campbell, K. H. (2005). Differential nuclear remodeling of mammalian somatic cells by xenopus laevis oocyte and egg cytoplasm. Exp. Cell Res. 307, 131–141.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Armstrong, L. , Lako, M. , Lincoln, J. , Cairns, P. M. , and Hole, N. (2000). Mtert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells. Mech. Dev. 97, 109–116.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bavister, B. , Wolf, D. , and Brenner, C. (2005). Challenges of primate embryonic stem cell research. Cloning Stem Cells 7, 82–94.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bodnar, A. , Ouellette, M. , Frolkis, M. , Holt, S. , Chiu, C. , Morin, G. , Harley, C. , Shay, J. , Lichtsteiner, S. , and Wright, W. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Brockes, J. P. , and Kumar, A. (2005). Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310, 1919–1923.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Capecchi, M. R. (2005). Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6, 507–512.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Chen, X. , Mao, Z. , Liu, S. , Liu, H. , and Wang, X. , et al. (2005). Dedifferentiation of adult human myoblasts induced by ciliary neurotrophic factor in vitro. Mol. Biol. Cell 16, 3140–3151.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cowan, C. A. , Atienza, J. , Melton, D. A. , and Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Dai, Y. , Vaught, T. D. , Boone, J. , Chen, S. H. , and Phelps, C. J. , et al. (2002). Targeted disruption of the α1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–255.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Denning, C. , Burl, S. , Ainslie, A. , Bracken, J. , and Dinnyes, A. , et al. (2001a). Deletion of the α(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PRP) gene in sheep. Nat. Biotechnol. 19, 559–562.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Denning, C. , Dickinson, P. , Burl, S. , Wylie, D. , Fletcher, J. , and Clark, A. J. (2001b). Gene targeting in primary fetal fibroblasts from sheep and pig. Cloning Stem Cells 3, 221–231.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Doetschman, T. , Maeda, N. , and Smithies, O. (1988). Targeted mutation of the HPRT gene in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 85, 8583–8587.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Eckfeldt, C. E. , Mendenhall, E. M. , and Verfaillie, C. M. (2005). The molecular repertoire of the ‘almighty’ stem cell. Nat. Rev. Mol. Cell Biol. 6, 726–737.
| PubMed |
Endo, T. , Bryant, S. V. , and Gardiner, D. M. (2004). A stepwise model system for limb regeneration. Dev. Biol. 270, 135–145.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Engle, S. J. , Womer, D. E. , Davies, P. M. , Boivin, G. , Sahota, A. , Simmonds, H. A. , Stambrook, P. J. , and Tischfield, J. A. (1996). HPRT-APRT-deficient mice are not a model for Lesch–Nyhan syndrome. Hum. Mol. Genet. 5, 1607–1610.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Evans, M. , and Kaufman, M. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Finger, S. , Heavens, R. P. , Sirinathsinghji, D. J. , Kuehn, M. R. , and Dunnett, S. B. (1988). Behavioral and neurochemical evaluation of a transgenic mouse model of Lesch–Nyhan syndrome. J. Neurol. Sci. 86, 203–213.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Flores, I. , Benetti, R. , and Blasco, M. A. (2006). Telomerase regulation and stem cell behaviour. Curr. Opin. Cell Biol. 18, 254–260.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Gardiner, D. M. (2005). Ontogenetic decline of regenerative ability and the stimulation of human regeneration. Rejuvenation Res. 8, 141–153.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Golan, A. , Ron-el, R. , Herman, A. , Soffer, Y. , Weinraub, Z. , and Caspi, E. (1989). Ovarian hyperstimulation syndrome: an update review. Obstet. Gynecol. Surv. 44, 430–440.
| PubMed |
Greely, H. T. (2006). Moving human embryonic stem cells from legislature to lab: remaining legal and ethical questions. PLoS Med. 3, e143..
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hall, V. J. , Stojkovic, P. , and Stojkovic, M. (2006). Using therapeutic cloning to fight human disease: a conundrum or reality? Stem Cells 24, 1628–1637.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Harley, C. , Futcher, A. , and Greider, C. (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hematti, P. , Obrtlikova, P. , and Kaufman, D. S. (2005). Nonhuman primate embryonic stem cells as a preclinical model for hematopoietic and vascular repair. Exp. Hematol. 33, 980–986.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hodges, C. A. , and Stice, S. L. (2003). Generation of bovine transgenics using somatic cell nuclear transfer. Reprod. Biol. Endocrinol. 1, 81..
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jinnah, H. , De Gregorio, L. , Harris, J. , Nyhan, W. , and O’Neill, J. (2000). The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mutat. Res. 463, 309–326.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kirchoff, V. , Wong, S. , St, J. , and Pari, G. (2002). Generation of a life-expanded rhesus monkey fibroblast cell line for the growth of rhesus rhadinovirus (rrv). Arch. Virol. 147, 321–333.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kuehn, M. , Bradley, A. , Robertson, E. , and Evans, M. (1987). A potential animal model for Lesch–Nyhan syndrome through introduction of hprt mutations into mice. Nature 326, 295–298.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Lai, L. , Kolber-Simonds, D. , Park, K. W. , Cheong, H. T. , and Greenstein, J. L. , et al. (2002). Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089–1092.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Lester, L. B. , Kuo, H. C. , Andrews, L. , Nauert, B. , and Wolf, D. P. (2004). Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes. Reprod. Biol. Endocrinol. 2, 42.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
McCreath, K. J. , Howcroft, J. , Campbell, K. H. S. , Colman, A. , Schnieke, A. J. , and Kind, A. J. (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066–1069.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Nakamura, H. , Fukami, H. , Hayashi, Y. , Kiyono, T. , Nakatsugawa, S. , Hamaguchi, M. , and Ishizaki, K. (2002). Establishment of immortal normal and ataxia telangiectasia fibroblast cell lines by introduction of the htert gene. J. Radiat. Res. (Tokyo) 43, 167–174.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Norgren, R. B. (2004). Creation of non-human primate neurogenetic disease models by gene targeting and nuclear transfer. Reprod. Biol. Endocrinol. 2, 40.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Nyhan, W. (1973). The Lesch–Nyhan syndrome. Annu. Rev. Med. 24, 41.–60.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Nyhan, W. (1997). The recognition of Lesch–Nyhan syndrome as an inborn error of purine metabolism. J. Inherit. Metab. Dis. 20, 171–178.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Odelberg, S. J. (2005). Cellular plasticity in vertebrate regeneration. Anat. Rec. B New Anat. 287, 25–35.
| PubMed |
Pau, K. , and Wolf, D. (2004). Derivation and characterization of monkey embryonic stem cells. Reprod. Biol. Endocrinol. 2, 41.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Phelps, C. J. , Koike, C. , Vaught, T. D. , Boone, J. , and Wells, K. D. , et al. (2003). Production of α 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Piedrahita, J. (2000). Targeted modification of the domestic animal genome. Theriogenology 53, 105–116.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Poss, K. D. , Keating, M. T. , and Nechiporuk, A. (2003). Tales of regeneration in zebrafish. Dev. Dyn. 226, 202–210.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Rieske, P. , Krynska, B. , and Azizi, S. A. (2005). Human fibroblast-derived cell lines have characteristics of embryonic stem cells and cells of neuro-ectodermal origin. Differentiation 73, 474–483.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Rossant, J. (2003). Targeting mammalian genes–rats join in and mice move ahead. Nat. Biotechnol. 21, 625–627.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Serakinci, N. , and Keith, W. N. (2006). Therapeutic potential of adult stem cells. Eur. J. Cancer 42, 1243–1246.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Smithies, O. (2005). Many little things: one geneticist’s view of complex diseases. Nat. Rev. Genet. 6, 419–425.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Steinert, S. , Shay, J. W. , and Wright, W. E. (2000). Transient expression of human telomerase extends the life span of normal human fibroblasts. Biochem. Biophys. Res. Commun. 273, 1095–1098.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Steinert, S. , White, D. , Zou, Y. , Shay, J. , and Wright, W. (2002). Telomere biology and cellular aging in non-human primate cells. Exp. Cell Res. 272, 146–152.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Stocum, D. L. (2004). Amphibian regeneration and stem cells. Curr. Top. Microbiol. Immunol. 280, 1–70.
| PubMed |
Stojkovic, M. , Stojkovic, P. , Leary, C. , Hall, V. J. , Armstrong, L. , Herbert, M. , Nesbitt, M. , Lako, M. , and Murdoch, A. (2005). Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod. Biomed. Online 11, 226–231.
| PubMed |
Swijnenburg, R. J. , Tanaka, M. , Vogel, H. , Baker, J. , and Kofidis, T. , et al. (2005). Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112, I166–I172.
| PubMed |
Tam, P. P. , and Rossant, J. (2003). Mouse embryonic chimeras: tools for studying mammalian development. Development 130, 6155–6163.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Taranger, C. K. , Noer, A. , Sorensen, A. L. , Hakelien, A. M. , Boquest, A. C. , and Collas, P. (2005). Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol. Biol. Cell 16, 5719–5735.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Thomas, K. , and Capecchi, M. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Thomson, J. A. , Kalishman, J. , Golos, T. G. , Durning, M. , Harris, C. P. , Becker, R. A. , and Hearn, J. P. (1995). Isolation of a primate embryonic stem cell line. Proc. Natl Acad. Sci. USA 92, 7844–7848.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Verfaillie, C. M. (2005). Multipotent adult progenitor cells: an update. Novartis Found. Symp. 265, 55–61.
| PubMed |
Wilmut, I. , Schnieke, A. E. , McWhir, J. , Kind, A. J. , and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wobus, A. M. , and Boheler, K. R. (2005). Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 85, 635–678.
| Crossref | GoogleScholarGoogle Scholar | PubMed |