Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of chronic prenatal ethanol exposure on mitochondrial glutathione and 8-iso-prostaglandin F concentrations in the hippocampus of the perinatal guinea pig

C. R. Green A B , L. T. Watts C , S. M. Kobus A , G. I. Henderson C D , J. N. Reynolds A B and J. F. Brien A B E
+ Author Affiliations
- Author Affiliations

A Department of Pharmacology and Toxicology, Queen’s University, Kingston, ON K7L 3N6, Canada.

B Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada.

C Department of Pharmacology, The University of Texas Health Science Centre, San Antonio, TX 78229-3900, USA.

D Department of Medicine–Division of Gastrointestinal/Nutrition, The University of Texas Health Science Centre, San Antonio, TX 78229-3900, USA.

E Corresponding author. Email: brienj@post.queensu.ca

Reproduction, Fertility and Development 18(5) 517-524 https://doi.org/10.1071/RD05128
Submitted: 3 October 2005  Accepted: 22 February 2006   Published: 8 May 2006

Abstract

It is hypothesised that oxidative stress is a key mechanism of ethanol neurobehavioural teratogenicity, resulting in altered endogenous antioxidant status and increased membrane lipid peroxidation in the hippocampus of chronic prenatal ethanol exposure (CPEE) offspring. To test this hypothesis, timed pregnant guinea-pigs (term, approximately gestational day (GD) 68) received chronic daily oral administration of (i) 4 g ethanol kg–1 maternal bodyweight, (ii) isocaloric sucrose with pair feeding, or (iii) water. At GD 65 (term fetus) and postnatal day (PD) 0 (neonate), individual offspring were killed, the brain was excised and the hippocampi were dissected. Glutathione (GSH) concentration was measured in the cytosolic and mitochondrial fractions of hippocampal homogenate. The occurrence of lipid peroxidation was determined by measuring the concentration of 8-iso-prostaglandin F (8-iso-PGF). There was CPEE-induced decreased brain weight and hippocampal weight at GD 65 and PD 0, decreased mitochondrial GSH concentration in the hippocampus at PD 0, with no change in mitochondrial GSH concentration at GD 65 or cytosolic GSH concentration at GD 65 or PD 0, and no change in mitochondrial or whole-homogenate 8-iso-PGF concentration in the hippocampus at GD 65 or PD 0. The data demonstrate that CPEE produces selective mitochondrial dysfunction in the hippocampus of the neonatal guinea-pig, involving GSH depletion.


Acknowledgments

This research was supported by operating grants from the Canadian Institutes of Health Research (NET-54014) and the National Institute on Alcohol Abuse and Alcoholism (RO-5R21 AA013431). CRG is the recipient of a provincial Ontario Graduate Scholarship in Science and Technology.


References

Abdollah, S. , Catlin, M. C. , and Brien, J. F. (1993). Ethanol neuro-behavioural teratogenesis in the guinea pig: behavioural dysfunction and hippocampal morphologic change. Can. J. Physiol. Pharmacol. 71, 776–782.
PubMed |

Abel, E. L. , and Hannigan, J. H. (1995). Maternal risk factors in fetal alcohol syndrome: provocative and permissive influences. Neurotoxicol. Teratol. 17, 445–462.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Barnes, D. E. , and Walker, D. W. (1981). Prenatal ethanol exposure permanently reduces the number of pyramidal neurons in rat hippocampus. Brain Res. 227, 333–340.
PubMed |

Castillo, R. A. , Devoe, L. D. , Ruedrich, D. A. , and Gardner, P. (1989). The effects of acute alcohol intoxication on biophysical activities: a case report. Am. J. Obstet. Gynecol. 160, 692–693.
PubMed |

Catlin, M. C. , Abdollah, S. , and Brien, J. F. (1993). Dose-dependent effects of prenatal ethanol exposure in the guinea pig. Alcohol 10, 109–115.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Clarke, D. W. , Steenaart, N. A. , Slack, C. J. , and Brien, J. F. (1986). Pharmacokinetics of ethanol and its metabolite, acetaldehyde, and fetolethality in the third-trimester pregnant guinea pig for oral administration of acute, multiple-dose ethanol. Can. J. Physiol. Pharmacol. 64, 1060–1067.
PubMed |

Clarren, S. K. , and Smith, D. W. (1978). The fetal alcohol syndrome. N. Engl. J. Med. 298, 1063–1067.
PubMed |

Cohen-Kerem, R. , and Koren, G. (2003). Antioxidants and fetal protection against ethanol teratogenicity. I. Review of the experimental data and implications to humans. Neurotoxicol. Teratol. 25, 1–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Colell, A. , Garcia-Ruiz, C. , Morales, A. , Ballesta, A. , Ookhtens, M. , Rodes, J. , Kaplowitz, N. , and Fernandez-Checa, J. C. (1997). Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-l-methionine. Hepatology 26, 699–708.
PubMed |

Dobbing, J. , and Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Hum. Dev. 3, 79–83.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Elvidge, H. (1972). Production of dated pregnant guinea pigs without postpartum matings. J. Inst. Anim. Tech. 23, 111–117.


Fernandez-Checa, J. C. , Garcia-Ruiz, C. , Ookhtens, M. , and Kaplowitz, N. (1991). Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress. J. Clin. Invest. 87, 397–405.
PubMed |

Fessel, J. P. , Hulette, C. , Powell, S. , Roberts, L. J. , and Zhang, J. (2003). Isofurans, but not F2-isoprostanes, are increased in the substantia nigra of patients with Parkinson's disease and with dementia with Lewy body disease. J. Neurochem. 85, 645–650.
PubMed |

Garcia-Ruiz, C. , Morales, A. , Colell, A. , Rodes, J. , Yi, J. R. , Kaplowitz, N. , and Fernandez-Checa, J. C. (1995). Evidence that the rat hepatic mitochondrial carrier is distinct from the sinusoidal and canalicular transporters for reduced glutathione. Expression studies in Xenopus laevis oocytes. J. Biol. Chem. 270, 15 946–15 949.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gibson, M. A. , Butters, N. S. , Reynolds, J. N. , and Brien, J. F. (2000). Effects of chronic prenatal ethanol exposure on locomotor activity, and hippocampal weight, neurons, and nitric oxide synthase activity of the young postnatal guinea pig. Neurotoxicol. Teratol. 22, 183–192.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Green, C. R. , Kobus, S. M. , Ji, Y. , Bennett, B. M. , Reynolds, J. N. , and Brien, J. F. (2005). Chronic prenatal ethanol exposure increases apoptosis in the hippocampus of the term fetal guinea pig. Neurotoxicol. Teratol. 27, 871–881.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Griffith, O. W. , and Meister, A. (1985). Origin and turnover of mitochondrial glutathione. Proc. Natl Acad. Sci. USA 82, 4668–4672.
PubMed |

Hamilton, D. A. , Kodituwakku, P. , Sutherland, R. J. , and Savage, D. D. (2003). Children with Fetal Alcohol Syndrome are impaired at place learning but not cued-navigation in a virtual Morris water task. Behav. Brain Res. 143, 85–94.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hayward, M. L. , Martin, A. E. , Brien, J. F. , Dringenberg, H. C. , Olmstead, M. C. , and Reynolds, J. N. (2004). Chronic prenatal ethanol exposure impairs conditioned responding and enhances GABA release in the hippocampus of the adult guinea pig. J. Pharmacol. Exp. Ther. 308, 644–650.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Iqbal, U. , Dringenberg, H. C. , Brien, J. F. , and Reynolds, J. N. (2004). Chronic prenatal ethanol exposure alters hippocampal GABA(A) receptors and impairs spatial learning in the guinea pig. Behav. Brain Res. 150, 117–125.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kerns, K. A. , Don, A. , Mateer, C. A. , and Streissguth, A. P. (1997). Cognitive deficits in nonretarded adults with fetal alcohol syndrome. J. Learn. Disabil. 30, 685–693.
PubMed |

Kimura, K. A. , and Brien, J. F. (1998). Hippocampal nitric oxide synthase in the fetal guinea pig: effects of chronic prenatal ethanol exposure. Brain Res. Dev. Brain Res. 106, 39–46.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kimura, K. A. , Reynolds, J. N. , and Brien, J. F. (2000). Ethanol neurobehavioral teratogenesis and the role of the hippocampal glutamate-N-methyl-d-aspartate receptor-nitric oxide synthase system. Neurotoxicol. Teratol. 22, 607–616.
Crossref | d
-aspartate receptor-nitric oxide synthase system.&journal=Neurotoxicol. Teratol.&volume=22&pages=607-616&publication_year=2000&author=K%2E%20A%2E%20Kimura&hl=en&doi=10.1016/S0892-0362(00)00089-1" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed |

Koren, G. , Nulman, I. , Chudley, A. E. , and Loock, C. (2003). Fetal alcohol spectrum disorder. CMAJ 169, 1181–1185.
PubMed |

Livy, D. J. , Miller, E. K. , Maier, S. E. , and West, J. R. (2003). Fetal alcohol exposure and temporal vulnerability: effects of binge-like alcohol exposure on the developing rat hippocampus. Neurotoxicol. Teratol. 25, 447–458.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lowry, O. H. , Rosebrough, N. J. , Farr, A. L. , and Randal, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.
PubMed |

Martensson, J. , Lai, J. C. , and Meister, A. (1990). High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc. Natl Acad. Sci. USA 87, 7185–7189.
PubMed |

McGoey, T. N. , Reynolds, J. N. , and Brien, J. F. (2003). Chronic prenatal ethanol exposure-induced decrease of guinea pig hippocampal CA1 pyramidal cell and cerebellar Purkinje cell density. Can. J. Physiol. Pharmacol. 81, 476–484.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Montoliu, C. , Sancho-Tello, M. , Azorin, I. , Burgal, M. , Valles, S. , Renau-Piqueras, J. , and Guerri, C. (1995). Ethanol increases cytochrome P4502E1 and induces oxidative stress in astrocytes. J. Neurochem. 65, 2561–2570.
PubMed |

Morrow, J. D. , Hill, K. E. , Burk, R. F. , Nammour, T. M. , Badr, K. F. , and Roberts, L. J. (1990). A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl Acad. Sci. USA 87, 9383–9387.
PubMed |

Pratico, D. , My Lee, V. , Trojanowski, J. Q. , Rokach, J. , and Fitzgerald, G. A. (1998). Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J. 12, 1777–1783.
PubMed |

Puri, R. K. , Reynolds, J. N. , and Brien, J. F. (2003). Effects of chronic prenatal ethanol exposure on NMDA receptor number and affinity for [3H]MK-801 in the cerebral cortex of the young postnatal and adult guinea-pig. Reprod. Fertil. Dev. 15, 207–214.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ramachandran, V. , Perez, A. , Chen, J. , Senthil, D. , Schenker, S. , and Henderson, G. I. (2001). In utero ethanol exposure causes mitochondrial dysfunction, which can result in apoptotic cell death in fetal brain: a potential role for 4-hydroxynonenal. Alcohol. Clin. Exp. Res. 25, 862–871.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rathinam, M. L. , Watts, L. T. , Stark, A. A. , Mahimainathan, L. , Stewart, J. , Schenker, S. , and Henderson, G. I. (2006). Astrocyte control of fetal cortical neuron glutathione homeostasis: up-regulation by ethanol. J. Neurochem. 96, 1289–1300.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reinke, L. A. , Lai, E. K. , DuBose, C. M. , and McCay, P. B. (1987). Reactive free radical generation in vivo in heart and liver of ethanol-fed rats: correlation with radical formation in vitro. Proc. Natl Acad. Sci. USA 84, 9223–9227.
PubMed |

Richardson, D. P. , Byrnes, M. L. , Brien, J. F. , Reynolds, J. N. , and Dringenberg, H. C. (2002). Impaired acquisition in the water maze and hippocampal long-term potentiation after chronic prenatal ethanol exposure in the guinea-pig. Eur. J. Neurosci. 16, 1593–1598.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Roberts, L. J. , and Fessel, J. P. (2004). The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem. Phys. Lipids 128, 173–186.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Roberts, L. J. , and Morrow, J. D. (2000). Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med. 28, 505–513.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schenker, S. , Becker, H. C. , Randall, C. L. , Phillips, D. K. , Baskin, G. S. , and Henderson, G. I. (1990). Fetal alcohol syndrome: current status of pathogenesis. Alcohol. Clin. Exp. Res. 14, 635–647.
PubMed |

Schlorff, E. C. , Husain, K. , and Somani, S. M. (1999). Dose- and time-dependent effects of ethanol on plasma antioxidant system in rat. Alcohol 17, 97–105.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sims, N. R. , Nilsson, M. , and Muyderman, H. (2004). Mitochondrial glutathione: a modulator of brain cell death. J. Bioenerg. Biomembr. 36, 329–333.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smith, G. N. , Patrick, J. , Sinervo, K. R. , and Brien, J. F. (1991). Effects of ethanol exposure on the embryo-fetus: experimental considerations, mechanisms, and the role of prostaglandins. Can. J. Physiol. Pharmacol. 69, 550–569.
PubMed |

Steenaart, N. A. , Clarke, D. W. , and Brien, J. F. (1985). Gas-liquid chromatographic analysis of ethanol and acetaldehyde in blood with minimal artifactual acetaldehyde formation. J. Pharmacol. Methods 14, 199–212.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Watts, L. T. , Rathinam, M. L. , Schenker, S. , and Henderson, G. I. (2005). Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death. J. Neurosci. Res. 80, 655–666.
Crossref | GoogleScholarGoogle Scholar | PubMed |

West, J. R. , Chen, W. J. , and Pantazis, N. J. (1994). Fetal alcohol syndrome: the vulnerability of the developing brain and possible mechanisms of damage. Metab. Brain Dis. 9, 291–322.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Youssef, J. A. , Birnbaum, L. S. , Swift, L. L. , Morrow, J. D. , and Badr, M. Z. (2003). Age-independent, gray matter-localized, brain-enhanced oxidative stress in male fischer 344 rats: brain levels of F(2)-isoprostanes and F(4)-neuroprostanes. Free Radic. Biol. Med. 34, 1631–1635.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zivin, J. A. , and Bartko, J. J. (1976). Statistics for disinterested scientists. Life Sci. 18, 15–26.
Crossref | GoogleScholarGoogle Scholar | PubMed |