Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Comparison of gene expression in individual preimplantation bovine embryos produced by in vitro fertilisation or somatic cell nuclear transfer

Luiz Sergio de A. Camargo A B , Anne M. Powell B , Vicente R. do Vale Filho C and Robert J. Wall C D
+ Author Affiliations
- Author Affiliations

A Embrapa Dairy Cattle, Rua Eugênio do Nascimento, 610, Juiz de Fora, MG, 36038-330 Brazil.

B School of Veterinary Science, Federal University of Minas Gerais, Av. Antôno Carlos, 6627, Belo Horizonte, MG, 30123-970 Brazil.

C Biotechnology and Germplasm Laboratory, Agricultural Research Service, Beltsville Agricultural Research Center-EAST, Building 200, Beltsville, MD 20705-2350, USA.

D Corresponding author. Email: bobwall@anri.barc.usda.gov

Reproduction, Fertility and Development 17(5) 487-496 https://doi.org/10.1071/RD04128
Submitted: 2 November 2004  Accepted: 13 March 2005   Published: 2 May 2005

Abstract

In vitro fertilisation (IVF) and somatic cell nuclear transfer (SCNT) have been implicated in a variety of developmental abnormalities. Aberrant gene expression is likely to account for much of the diminished viability and developmental abnormalities observed. In the present study, the expression of multiple genes in IVF and SCNT bovine blastocyst-stage embryos were evaluated and compared with in vivo-produced embryos. Eleven genes expressed at and following maternal–zygotic transcription transition were evaluated in individual blastocysts by real-time polymerase chain reaction following RNA amplification. A subset of those genes was also evaluated in individual IVF and SCNT eight-cell embryos. A fibroblast-specific gene, expressed by nuclear donor cells, was also evaluated in IVF and SCNT embryos. The observed gene expression pattern at the eight-cell stage was not different between IVF and SCNT embryos (P > 0.05). In vitro fertilisation and SCNT blastocyst expression was lower (P < 0.01) for all genes compared with their in vivo-produced counterparts, except for lactate dehydrogenase isoenzyme A (P < 0.001). The patterns of gene expression of the IVF and SCNT blastocysts were indistinguishable. Neither SCNT eight-cell nor blastocyst-stage embryos expressed the gene used as a fibroblast marker (collagen VIα1). For the genes evaluated, the level of expression was influenced more by the environment than by the method used to produce the embryos. These results support the notion that if developmental differences observed in IVF- and SCNT-produced fetuses and neonates are the result of aberrant gene expression during the preimplantation stage, those differences in expression are subtle.

Extra keywords: cloning, early development.


Acknowledgments

The authors thank Harold Hawk for performing the in vivo embryo collection and Paul Graninger for his assistance in the laboratory. This study was supported by the CAPES Foundation, Embrapa and ARS/USDA.


References

Augustin, R. , Pocar, P. , Navarrete-Santos, A. , Wrenzycki, C. , Gandolfi, F. , Niemann, H. , and Fischer, B. (2001). Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos. Mol. Reprod. Dev. 60, 370–376.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dean, W. , Santos, F. , Stojkovic, M. , Zakhartchenko, V. , Walter, J. , Wolf, E. , and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA 98, 13 734–13 738.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de Sousa, P. A. , Caveney, A. , Westhusin, M. E. , and Watson, A. J. (1998). Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology 49, 115–128.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Donnison, M. , and Pfeffer, P. L. (2004). Isolation of genes associated with developmentally competent bovine oocytes and quantitation of their levels during development. Biol. Reprod. 71, 1813–1821.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fernandez-Gonzalez, R. , Moreira, P. , Bilbao, A. , Jimenez, A. , Perez-Crespo, M. , Ramirez, M. A. , Rodriguez, D. F. , Pintado, B. , and Gutierrez-Adan, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl Acad. Sci. USA 101, 5880–5885.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Galli, C. , Crotti, G. , Notari, C. , Turini, P. , Duchi, R. , and Lazzari, G. (2001). Embryo production by ovum pick up from live donors. Theriogenology 55, 1341–1357.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gao, S. , Chung, Y. G. , Williams, J. W. , Riley, J. , Moley, K. , and Latham, K. E. (2003). Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol. Reprod. 69, 48–56.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gutierrez-Adan, A. , Rizos, D. , Fair, T. , Moreira, P. N. , Pintado, B. , de la Fuente, J. , Boland, M. P. , and Lonergan, P. (2004). Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol. Reprod. Dev. 68, 441–448.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Han, Y. M. , Kang, Y. K. , Koo, D. B. , and Lee, K. K. (2003). Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology 59, 33–44.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Harrouk, W. , Robaire, B. , and Hales, B. F. (2000). Paternal exposure to cyclophosphamide alters cell–cell contacts and activation of embryonic transcription in the preimplantation rat embryo. Biol. Reprod. 63, 74–81.
PubMed |

Harvey, A. J. , Kind, K. L. , Pantaleon, M. , Armstrong, D. T. , and Thompson, J. G. (2004). Oxygen-regulated gene expression in bovine blastocysts. Biol. Reprod. 71, 1108–1119.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hasler, J. F. (2003). The current status and future of commercial embryo transfer in cattle. Anim. Reprod. Sci. 79, 245–264.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Heil, S. G. , Kluijtmans, L. A. , Spiegelstein, O. , Finnell, R. H. , and Blom, H. J. (2003). Gene-specific monitoring of T7-based RNA amplification by real-time quantitative PCR. Biotechniques 35, 502–508.
PubMed |

Heyman, Y. , Chavatte-Palmer, P. , LeBourhis, D. , Camous, S. , Vignon, X. , and Renard, J. P. (2002). Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol. Reprod. 66, 6–13.
PubMed |

Hill, J. R. , Burghardt, R. C. , Jones, K. , Long, C. R. , Looney, C. R. , Shin, T. , Spencer, T. E. , Thompson, J. A. , Winger, Q. A. , and Westhusin, M. E. (2000). Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63, 1787–1794.
PubMed |

Kanka, J. (2003). Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology 59, 3–19.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kelly, P. , Duffy, P. , Roche, J. F. , and Boland, M. P. (1997). Superovulation in cattle: effect of FSH type and method of administration on follicular growth, ovulatory response and endocrine patterns. Anim. Reprod. Sci. 46, 1–14.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kielty, C. M. , Boot-Handford, R. P. , Ayad, S. , Shuttleworth, C. A. , and Grant, M. E. (1990). Molecular composition of type VI collagen. Evidence for chain heterogeneity in mammalian tissues and cultured cells. Biochem. J. 272, 787–795.
PubMed |

Klein, D. (2002). Quantification using real-time PCR technology: applications and limitations. Trends Mol. Med. 8, 257–260.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Knijn, H. M. , Wrenzycki, C. , Hendriksen, P. J. , Vos, P. L. , Herrmann, D. , van der Weijden, G. C. , Niemann, H. , and Dieleman, S. J. (2002). Effects of oocyte maturation regimen on the relative abundance of gene transcripts in bovine blastocysts derived in vitro or in vivo. Reproduction 124, 365–375.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kurosaka, S. , Eckardt, S. , and McLaughlin, K. J. (2004). Pluripotent lineage definition in bovine embryos by Oct4 transcript localization. Biol. Reprod. 71, 1578–1582.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lazzari, G. , Wrenzycki, C. , Herrmann, D. , Duchi, R. , Kruip, T. , Niemann, H. , and Galli, C. (2002). Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol. Reprod. 67, 767–775.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Leese, H. J. (2002). Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24, 845–849.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Li, J. , Adams, L. , Schwartz, S. M. , and Bumgamer, R. E. (2003). RNA amplification, fidelity and reproducibility of expression profiling. C. R. Biol. 326, 1021–1030.
PubMed |

Lucifero, D. , Mann, M. R. , Bartolomei, M. S. , and Trasler, J. M. (2004). Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet. 13, 839–849.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McEvoy, T. G. (2003). Manipulation of domestic animal embryos and implications for development. Reprod. Domest. Anim. 38, 268–275.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McGraw, S. , Robert, C. , Massicotte, L. , and Sirard, M. A. (2003). Quantification of histone acetyltransferase and histone deacetylase transcripts during early bovine embryo development. Biol. Reprod. 68, 383–389.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mocellin, S. , Rossi, C. R. , Pilati, P. , Nitti, D. , and Marincola, F. M. (2003). Quantitative real-time PCR: a powerful ally in cancer research. Trends Mol. Med. 9, 189–195.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Offenberg, H. , Barcroft, L. C. , Caveney, A. , Viuff, D. , Thomsen, P. D. , and Watson, A. J. (2000). mRNAs encoding aquaporins are present during murine preimplantation development. Mol. Reprod. Dev. 57, 323–330.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Park, S. H. , Park, S. B. , and Kim, N. H. (2003). Expression of early development-related genes in bovine nuclear transferred and fertilized embryos. Zygote 11, 355–360.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Phillips, J. , and Eberwine, J. H. (1996). Antisense RNA amplification: a linear amplification method for analyzing the mRNA population from single living cells. Methods 10, 283–288.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Powell, A. M. , Talbot, N. C. , Wells, K. D. , Kerr, D. E. , Pursel, V. G. , and Wall, R. J. (2004). Cell donor influences success of producing cattle by somatic cell nuclear transfer. Biol. Reprod. 71, 210–216.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reik, W. , Dean, W. , and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089–1093.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Renard, J. P. , Zhou, Q. , LeBourhis, D. , Chavatte-Palmer, P. , Hue, I. , Heyman, Y. , and Vignon, X. (2002). Nuclear transfer technologies: between successes and doubts. Theriogenology 57, 203–222.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rizos, D. , Fair, T. , Papadopoulos, S. , Boland, M. P. , and Lonergan, P. (2002). Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol. Reprod. Dev. 62, 320–327.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rosenkrans, C. F. , and First, N. L. (1994). Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J. Anim. Sci. 72, 434–437.
PubMed |

Schultz, R. M. , Davis, W. , Stein, P. , and Svoboda, P. (1999). Reprogramming of gene expression during preimplantation development. J. Exp. Zool. 285, 276–282.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sirard, M. A. , Parrish, J. J. , Ware, C. B. , Leibfried-Rutledge, M. L. , and First, N. L. (1988). The culture of bovine oocytes to obtain developmentally competent embryos. Biol. Reprod. 39, 546–552.
PubMed |

Telford, N. A. , Watson, A. J. , and Schultz, G. A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90–100.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Winger, Q. A. , Hill, J. R. , Shin, T. , Watson, A. J. , Kraemer, D. C. , and Westhusin, M. E. (2000). Genetic reprogramming of lactate dehydrogenase, citrate synthase, and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei. Mol. Reprod. Dev. 56, 458–464.
PubMed |

Wrenzycki, C. , Wells, D. , Herrmann, D. , Miller, A. , Oliver, J. , Tervit, R. , and Niemann, H. (2001). Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol. Reprod. 65, 309–317.
PubMed |

Wrenzycki, C. , Herrmann, D. , Lucas-Hahn, A. , Lemme, E. , Korsawe, K. , and Niemann, H. (2004). Gene expression patterns in in vitro-produced and somatic nuclear transfer-derived preimplantation bovine embryos: relationship to the large offspring syndrome? Anim. Reprod. Sci. 82–83, 593–603.
Crossref | GoogleScholarGoogle Scholar | PubMed |