Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The role of animal studies in supporting human assisted reproductive technology

Barry Bavister
+ Author Affiliations
- Author Affiliations

A University of New Orleans, Department of Biological Sciences, University of New Orleans, 200 Computer Centre, New Orleans, LA 70148, USA. Email: bbaviste@uno.edu

B Tulane Institute for Reproductive Medicine, Department of Obstetrics and Gynecology, Tulane Health Sciences Center, USA.

Reproduction, Fertility and Development 16(7) 719-728 https://doi.org/10.1071/RD04087
Submitted: 10 August 2004  Accepted: 11 October 2004   Published: 9 December 2004

Abstract

Although average success rates of human IVF have increased progressively during the past two decades, the efficiency of this technique, based on each embryo produced or transferred, is still low. High success rates are usually achieved by transferring several embryos to the patient, which is often associated with multiple pregnancies. The quality of in vitro produced embryos is a major area that needs attention. Because there is no in vivo database for human embryos, the properties of normal embryos are not known, and so it is difficult to know how to improve quality and viability. In addition, selection of the most viable embryos for transfer is a rather subjective process. The origins of human assisted reproductive technology (ART) are based on animal ART; however, the two areas of research (animal and human ART) appear to have become disconnected. Re-examination of progress in animal ART could help improve human embryo quality and thereby assist efforts to sustain high pregnancy rates with only one or two embryos transferred. Some key areas in which animal ART can help guide progress in human ART are discussed.


References

Austin, C. R. (1951). Observations on the penetration of the sperm into the mammalian egg. Aust. J. Sci. Res. 4, 581–596.
Bavister B. D. (2002). Timing of embryo development. In ‘Assessment of Mammalian Embryo Quality: Invasive and Non-Invasive Techniques’. (Eds A. Van Soom and M. L. Boerjan.) pp. 139–155. (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Bavister, B. D. , and Brenner, C. A. (2004). How can basic science help human ART? The Clinical Embryologist 7, 6–11.


Bavister, B. D. , Edwards, R. G. , and Steptoe, P. C. (1969). Identification of the midpiece and tail of the spermatozoon during fertilization of human eggs in vitro. J. Reprod. Fertil. 20, 159–160.
PubMed |

Chang, M. C. (1951). Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168, 697–698.
PubMed |

Doherty, A. S. , Mann, M. R. , Tremblay, K. D. , Bartolomei, M. S. , and Schultz, R. M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526–1535.
PubMed |

Edwards, R. G. (1965). Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208, 349–351.
PubMed |

Edwards, R. G. , Donahue, R. P. , Baramki, T. A. , and Jones, H. W. Jr (1966). Preliminary attempts to fertilize human oocytes matured in vitro. Am. J. Obstet. Gynecol. 96, 192–200.
PubMed |

Edwards, R. G. , Bavister, B. D. , and Steptoe, P. C. (1969). Early stages of fertilization in vitro of human oocytes matured in vitro. Nature 221, 632–635.
PubMed |

Enders, A. C. , Boatman, D. E. , Morgan, P. M. , and Bavister, B. D. (1989). Differentiation of blastocysts derived from in vitro-fertilized Rhesus monkey ova. Biol. Reprod. 41, 715–727.
PubMed |

Gonzales, D. S. , and Bavister, B. D. (1995). Zona pellucida escape by hamster blastocysts in vitro is delayed and morphologically different compared with zona escape in vivo. Biol. Reprod. 52, 470–480.
PubMed |

Hasler, J. (1998). The current status of oocyte recovery, in vitro embryo production and embryo transfer in domestic animals with an emphasis on the bovine. J. Anim. Sci. 76 ((Suppl. 3)), 52–74.


Hassold, T. , and Hunt, P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ho, Y. , Wigglesworth, K. , Eppig, J. J. , and Schultz, R. (1995). Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–238.
PubMed |

Houghton, F. D. , and Leese, H. J. (2004). Metabolism and developmental competence of the preimplantation embryo. Eur. J. Obstet. Gynecol. Reprod. Biol. 115, S92–S96.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Leese, H. J. (1991). Metabolism of the preimplantation mammalian embryo. Oxf. Rev. Reprod. Biol. 13, 35–72.
PubMed |

Liu, H. , Chang, H. C. , Zhang, J. , Grifo, J. , and Krey, L. C. (2003). Metaphase II nuclei generated by germinal vesicle transfer in mouse oocytes support embryonic development to term. Hum. Reprod. 18, 1903–1907.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Martino, A. , Pollard, J. W. , and Leibo, S. P. (1996). Effect of chilling bovine oocytes on their developmental competence. Mol. Reprod. Dev. 45, 503–512.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McKiernan, S. H. , and Bavister, B. D. (1994). Timing of development is a critical parameter for predicting successful embryogenesis. Hum. Reprod. 9, 2123–2129.
PubMed |

Munne, S. , and Cohen, J. (1998). Chromosome abnormalities in human embryos. Hum. Reprod. Update 4, 842–855.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Munne, S. , Marquez, C. , Reing, A. , Garrisi, J. , and Alikani, M. (1998). Chromosome abnormalities in embryos obtained after conventional in vitro fertilization and intracytoplasmic sperm injection. Fertil. Steril. 69, 904–908.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Niemann, H. , and Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53, 21–34.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Parrish, J. J. , Susko-Parrish, J. L. , and First, N. L. (1989). Capacitation of bovine sperm by heparin: inhibitory effect of glucose and role of intracellular pH. Biol. Reprod. 41, 683–699.
PubMed |

Poueymirou, W. T. , Conover, J. C. , and Schultz, R. M. (1989). Regulation of mouse preimplantation development: differential effects of CZB medium and Whitten's medium on rates and patterns of protein synthesis in 2-cell embryos. Biol. Reprod. 41, 317–322.
PubMed |

Racowsky, C. , Jackson, K. V. , Cekleniak, N. A. , Fox, J. H. , Hornstein, M. D. , and Ginsburg, E. S. (2000). The number of eight-cell embryos is a key determinant for selecting day 3 or day 5 transfer. Fertil. Steril. 73, 558–564.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vajta, G. , Holm, P. , Kuwayama, M. , Booth, P. J. , Jacobsen, H. , Greve, T. , and Callesen, H. (1998). Open Pulled Straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev. 51, 53–58.
Crossref | GoogleScholarGoogle Scholar | PubMed |

van Soom, A. , Ysebaert, M. T. , and de Kruif, A. (1997). Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol. Reprod. Dev. 47, 47–56.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Verlinsky, Y. , Rechitsky, S. , Verlinsky, O. , and Ivachnenki, V. , et al. (1999). Prepregnancy testing for single-gene disorders by polar body analysis. Genet. Test. 3, 185–190.
PubMed |

Warner, C. M. , Newmark, J. A. , Comiskey, M. , and De Fazio, S. R. , et al. (2004). Genetics and imaging to assess oocyte and preimplantation embryo health. Reprod. Fertil. Dev. 16, 729–741.
PubMed |

Wrenzycki, C. , and Niemann, H. (2003). Epigenetic reprogramming in early embryonic development: effects of in vitro production and somatic nuclear transfer. Reprod. Biomed. Online 7, 649–656.
PubMed |

Wrenzycki, C. , Herrmann, D. , Carnwath, J. W. , and Niemann, H. (1999). Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53, 8–18.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wrenzycki, C. , Herrmann, D. , Keskintepe, L. , Martins, A. J. , Sirisathien, S. , Brackett, B. , and Niemann, H. (2001). Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum. Reprod. 16, 893–901.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wright, V. C. , Schieve, L. A. , Reynolds, M. A. , and Jeng, G. (2003). Assisted reproductive technology surveillance – United States, 2000. MMWR Surveill. Summ. 29, 1–16.


Wu, B. , Tong, J. , and Leibo, S. P. (1999). Effects of cooling germinal vesicle-stage bovine oocytes on meiotic spindle formation following in vitro maturation. Mol. Reprod. Dev. 54, 388–395.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yanagimachi, R. , and Chang, M. C. (1963). Fertilization of hamster eggs in vitro. Nature 200, 281–282.
PubMed |

Yanagimachi, R. , and Chang, M. C. (1964). In vitro fertilization of golden hamster ova. J. Exp. Zool. 156, 361–376.
PubMed |

Yoon, T. K. , Kim, T. J. , Park, S. E. , Hong, S. W. , Ko, J. J. , Chung, H. M. , and Cha, K. Y. (2003). Live births after vitrification of oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil. Steril. 79, 1323–1326.
Crossref | GoogleScholarGoogle Scholar | PubMed |