Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Mechanisms of action of the principal prolific genes and their application to sheep production

C. J. H. Souza A F , A. González-Bulnes B , B. K. Campbell C , A. S. McNeilly D and D. T. Baird E
+ Author Affiliations
- Author Affiliations

A Embrapa Pecuária Sul, Rodovia BR 153 km 595, Cx. Postal 242, Vila Industrial – Zona Rural, CEP 96401-970, Bagé – RS, Brazil.

B Departamento de Reproducción Animal, INIA, Avda Puerta de Hierro s/n, 28040–Madrid, Spain.

C School of Human Development, University of Nottingham, D Floor East Block, Queen’s Medical Centre, Nottingham, NG7 2UH, UK.

D MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.

E Department of Reproductive and Developmental Sciences, University of Edinburgh, Centre for Reproductive Biology, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.

F To whom correspondence should be addressed. email: csouza@cppsul.embrapa.br

Reproduction, Fertility and Development 16(4) 395-401 https://doi.org/10.1071/RD04038
Accepted: 23 March 2004   Published: 6 July 2004

Abstract

The prolificacy variation in sheep makes it an excellent animal model to understand the mechanisms regulating ovulation rate. Identification of mutations responsible for the increased prolificacy of the Inverdale, Booroola, Javanese, Cambridge and Belclare sheep open new avenues of investigation for the paracrine control of folliculogenesis. To date, all known mutations are in genes from ligands or receptors of the transforming growth factor β superfamily, and point to the bone morphogenetic protein family of peptides as local regulators of ovarian follicle growth. The mechanism of action of the mutated genes is not fully understood, but results in the ovulation of a higher number of follicles with smaller diameter and fewer granulosa cells than that of the wildtype, thus speeding the differentiation of ovulatory follicles. Comparisons of the performance of Booroola-crossed flocks in different countries showed that carriers of the prolificacy mutation have higher ewe productivity but also higher perinatal mortality and lighter weight lambs. Their economic impact on the sheep industry depends on farm environment and management. Nevertheless, the diagnostic tests now available to identify the genetic mutations resulting in increased ovulation rate, will simplify the introduction of these mutations and their monitoring in flocks for research and commercial purposes.

Extra keywords: Booroola, Inverdale, mutation, ovulation rate, prolific sheep.


References

Amer, P. R. , McEwan, J. C. , Dodds, K. G. , and Davis, G. H. (1999). Economic values for ewe profilicacy and lamb survival in New Zealand sheep. Livest. Prod. Sci. 58, 75–90.
Crossref | GoogleScholarGoogle Scholar |

Baird, D. T. , and Campbell, B. K. (1998). Follicle selection in sheep with breed differences in ovulation rate. Mol. Cell. Endocrinol. 145, 89–95.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bodensteiner, K. J. , Clay, C. M. , Moeller, C. L. , and Sawyer, H. R. (1999). Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol. Reprod. 60, 381–386.
PubMed |

Bodensteiner, K. J. , McNatty, K. P. , Clay, C. M. , Moeller, C. L. , and Sawyer, H. R. (2000). Expression of growth and differentiation factor-9 in the ovaries of fetal sheep homozygous or heterozygous for the inverdale prolificacy gene (FecXI). Biol. Reprod. 62, 1479–1485.
PubMed |

Bodin, L. , SanCristobal, M. , Lecerf, F. , Mulsant, P. , Bibe, B. , Lajous, D. , Belloc, J. P. , Eychenne, F. , Amigues, Y. , and Elsen, J. M. (2002). Segregation of a major gene influencing ovulation in progeny of Lacaune meat sheep. Genet. Sel. Evol. 34, 447–464.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bradford, G. E. , Quirke, J. F. , Sitorus, P. , Inounu, I. , Tiesnamurti, B. , Bell, F. L. , Fletcher, I. C. , and Torrell, D. T. (1986). Reproduction in Javanese sheep: evidence for a gene with a large effect on ovulation rate and litter size. J. Anim. Sci. 63, 418–431.
PubMed |

Campbell, B. K. , Scaramuzzi, R. J. , and Webb, R. (1996). Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media. J. Reprod. Fertil. 106, 7–16.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Davis, G. H. and  Hinch, G. N. (1985). Introduction and management of the Booroola gene in sheep flocks in New Zealand. In ‘Genetics of Reproduction in Sheep’. (Eds. R. B. Land and D. W. Robinson)  pp. 139–148. (Butterworths: London, UK.)

Davis, G. H. , Montgomery, G. W. , Allison, A. J. , Kelly, R. W. , and Bray, A. R. (1982). Segregation of a major gene influencing fecundity in progeny of Booroola sheep. N. Z. J. Agric. Res. 25, 525–529.


Davis, G. H., Elsen, J. M., Bodin, L., Fahmy, M. H., Castonguay, F., Gootwine, E., Bor, A., Braw-Tal, R., Lengyel, A. and  Paszthy, G. (1991). A comparison of the production from Booroola and local sheep breed in different countries. In ‘Major Genes for Reproduction in Sheep’. (Eds. J. M. Elsen, L. Bodin and J. Thimonier)  pp. 315–323. (INRA: Paris, France.)

Davis, G. H. , McEwan, J. C. , Fennessy, P. F. , Dodds, K. G. , McNatty, K. P. , and O, W. S. (1992). Infertility due to bilateral ovarian hypoplasia in sheep homozygous (FecXI FecXI) for the Inverdale prolificacy gene located on the X chromosome. Biol. Reprod. 46, 636–640.
PubMed |

Davis, G. H., Dodds, K. G., and  Bruce, G. D. (1999). Combined effect of the Inverdale and Booroola prolificacy genes on ovulation rate in sheep. In ‘Proceedings of the Thirteenth Conference Association for the Advancement of Animal Breeding and Genetics, Mandurah, Western Australia, 4–7 July 1999’.  pp. 74–77. (AABG: Armidale, NSW, Australia.)

Davis, G. H. , Dodds, K. G. , Wheeler, R. , and Jay, N. P. (2001). Evidence that an imprinted gene on the X chromosome increases ovulation rate in sheep. Biol. Reprod. 64, 216–221.
PubMed |

Davis, G. H. , Galloway, S. M. , Ross, I. K. , Gregan, S. M. , and Ward, J. (2002). DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation. Biol. Reprod 66, 1869–1874.
PubMed |

Elvin, J. A. , Yan, C. , and Matzuk, M. M. (2000). Oocyte-expressed TGF-beta superfamily members in female fertility. Mol. Cell. Endocrinol. 159, 1–5.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Erickson, G. F. , and Shimasaki, S. (2003). The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod. Biol. Endocrinol. 1, 9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fabre, S. , Pierre, A. , Pisselet, C. , Mulsant, P. , Lecerf, F. , Pohl, J. , Monget, P. , and Monniaux, D. (2003). The Booroola mutation in sheep is associated with an alteration of the bone morphogenetic protein receptor-IB functionality. J. Endocrinol. 177, 435–444.
PubMed |

Fernandez Abella, D. (1991). The Booroola sheep in Uruguay. In Major Genes for Reproduction in Sheep. (Eds. J. M. Elsen, L. Bodin and J. Thimonier)  pp. 27–29. (INRA: Paris, France.)

Galloway, S. M. , McNatty, K. P. , Cambridge, L. M. , Laitinen, M. P. , and Juengel, J. L. , et al. (2000). Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25, 279–283.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gootwine, E. , Zenu, A. , Bor, A. , Yossafi, S. , Rosov, A. , and Pollott, G. E. (2001). Genetic and economic analysis of introgression the B allele of FecB (Booroola) gene into Awassi and Assaf dairy breeds. Livest. Prod. Sci. 71, 49–58.
Crossref | GoogleScholarGoogle Scholar |

Hanrahan, J. P. (1991). Evidence for single gene effects on ovulation rate in the Cambridge and Belclare breeds. In ‘Major Genes for Reproduction in Sheep’. (Eds. J. M. Elsen, L. Bodin and J. Thimonier)  pp. 93–102. (INRA: Paris, France.)

Hanrahan, J. P. , Gregan, S. M. , Mulsant, P. , Mullen, M. , Davis, G. H. , Powell, R. , and Galloway, S. M. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70, 900–909.
PubMed |

Jonmundsson, J. V. and  Adalsteinsson, S. (1985). Single genes for fecundity in Icelandic sheep. In ‘Genetics of Reproduction in Sheep’. (Eds. R. B. Land and D. W. Robinson)  pp. 159–168. (Butterworths: London, UK.)

Juengel, J. L. , Hudson, N. L. , Heath, D. A. , Smith, P. , and Reader, K. L. , et al. (2002). Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol. Reprod. 67, 1777–1789.
PubMed |

Lee, W. S. , Otsuka, F. , Moore, R. K. , and Shimasaki, S. (2001). Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol. Reprod. 65, 994–999.
PubMed |

Liao, W. X. , Moore, R. K. , Otsuka, F. , and Shimasaki, S. (2003). Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9. Implication of the aberrant ovarian phenotype of BMP-15 mutant sheep. J. Biol. Chem. 278, 3713–3719.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liu, S. F. , Jiang, Y. L. , and Du, L. X. (2003). Studies of BMPR-IB and BMP15 as candidate genes for fecundity in little tailed han sheep. Yi Chuan Xue Bao 30, 755–760.
PubMed |

Martyniuk, E. and  Radomska, M. J. (1991). A single gene for prolificacy in Olkuska sheep. In ‘Major Genes for Reproduction in Sheep’. (Eds. J. M. Elsen, L. Bodin and J. Thimonier)  pp. 83–90. (INRA: Paris, France.)

Massague, J. (1998). TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753–791.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mazerbourg, S. , Klein, C. , Roh, J. , Kaivo-Oja, N. , Mottershead, D. G. , Korchynskyi, O. , Ritvos, O. , and Hsueh, A. J. (2004). Growth differentiation factor-9 (GDF-9) signaling is mediated by the type I receptor ALK5. Mol. Endocrinol. 18, 653–665.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McNatty, K. P. , Juengel, J. L. , Wilson, T. , Galloway, S. M. , and Davis, G. H. , et al. (2003). Oocyte-derived growth factors and ovulation rate in sheep. Reprod. Suppl. 61, 339–351.
PubMed |

Miyazono, K. , Kusanagi, K. , and Inoue, H. (2001). Divergence and convergence of TGF-beta/BMP signaling. J. Cell. Physiol. 187, 265–276.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Montgomery, G. W. , Galloway, S. M. , Davis, G. H. , and McNatty, K. P. (2001). Genes controlling ovulation rate in sheep. Reproduction 121, 843–852.
PubMed |

Montgomery, G. W. , Lord, E. A. , Penty, J. M. , Dodds, K. G. , Broad, T. E. , Cambridge, L. , Sunden, S. L. , Stone, R. T. , and Crawford, A. M. (1994). The Booroola fecundity (FecB) gene maps to sheep chromosome 6. Genomics 22, 148–153.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Moore, R. K. , Otsuka, F. , and Shimasaki, S. (2003). Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J. Biol. Chem. 278, 304–310.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mulsant, P. , Lecerf, F. , Fabre, S. , Schibler, L. , and Monget, P. , et al. (2001). Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proc. Natl Acad. Sci. USA 98, 5104–5109.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mulsant, P. , Lecerf, F. , Fabre, S. , Bodin, L. , Thimonier, J. , Monget, P. , Lanneluc, I. , Monniaux, D. , Teyssier, J. , and Elsen, J. M. (2003). Prolificacy genes in sheep: the French genetic programmes. Reprod. Suppl. 61, 353–359.
PubMed |

Otsuka, F. , Moore, R. K. , and Shimasaki, S. (2001a). Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J. Biol. Chem. 276, 32889–32895.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Otsuka, F. , Yamamoto, S. , Erickson, G. F. , and Shimasaki, S. (2001b). Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J. Biol. Chem. 276, 11387–11392.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Piper, L. R. and  Bindon, B. M. (1982). The Booroola Merino and the performance of medium non-Peppin crosses at Armidale. In ‘The Booroola Merino’. (Eds. L. R. Piper, B. M. Bindon and R. D. Nethery)  pp. 9–20. (CSIRO Publications: Melbourne, Australia.)

Roberts, J. A. (2000). Frequency of the prolificacy gene in flocks of Indonesian thin tail sheep: a review. Small Ruminant Res. 36, 215–226.
Crossref | GoogleScholarGoogle Scholar |

Roh, J. S. , Bondestam, J. , Mazerbourg, S. , Kaivo-Oja, N. , Groome, N. , Ritvos, O. , and Hsueh, A. J. (2003). Growth differentiation factor-9 stimulates inhibin production and activates Smad2 in cultured rat granulosa cells. Endocrinology 144, 172–178.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shackell, G. H. , Hudson, N. L. , Heath, D. A. , Lun, S. , Shaw, L. , Condell, L. , Blay, L. R. , and McNatty, K. P. (1993). Plasma gonadotropin concentrations and ovarian characteristics in Inverdale ewes that are heterozygous for a major gene (FecX1) on the X chromosome that influences ovulation rate. Biol. Reprod. 48, 1150–1156.
PubMed |

Shimasaki, S. , Zachow, R. J. , Li, D. , Kim, H. , Iemura, S. , Ueno, N. , Sampath, K. , Chang, R. J. , and Erickson, G. F. (1999). A functional bone morphogenetic protein system in the ovary. Proc. Natl Acad. Sci. USA 96, 7282–7287.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shimasaki, S. , Moore, R. K. , Erickson, G. F. , and Otsuka, F. (2003). The role bone morphogenetic proteins in ovarian function. Reprod. Suppl. 61, 323–337.
PubMed |

Souza, C. J. , MacDougall, C. , Campbell, B. K. , McNeilly, A. S. , and Baird, D. T. (2001). The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J. Endocrinol. 169, R1–R6.
PubMed |

Souza, C. J. , Campbell, B. K. , McNeilly, A. S. , and Baird, D. T. (2002). Effect of bone morphogenetic protein 2 (BMP2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immunohistochemistry. Reproduction 123, 363–369.
PubMed |

Souza, C. J. , Campbell, B. K. , McNeilly, A. S. , and Baird, D. T. (2003). Bone morphogenetic proteins and folliculogenesis: lessons from the Booroola mutation. Reprod. Suppl. 61, 361–370.
PubMed |

Villaroel, A. S. , Moraes, J. C. F. , Oliveira, N. M. , and Silveira, V. C. P. (1990). Introdução e avaliação dos efeitos de um gene determinante de prolificidade em ovinos Romney Marsh. Rev. Braz. Reprod. Anim. 14, 215–221.


Vitt, U. A. , Hayashi, M. , Klein, C. , and Hsueh, A. J. (2000). Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol. Reprod. 62, 370–377.
PubMed |

Vitt, U. A. , Mazerbourg, S. , Klein, C. , and Hsueh, A. W. J. (2002). Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol. Reprod. 67, 473–480.
PubMed |

Walling, G. A., Dodds, K. G., Galloway, S. M., Beattie, A. E., Lord, E. A., Lumsden, J. M., Montgomery, G. W., and  McEwan, J. C. (2000). The consequences of carrying the Booroola fecundity (FecB) gene on sheep liveweight. In ‘Proceedings of the British Society of Animal Science, Scarborough, March 2000’.  pp. 43. (British Society of Animal Science: Penicuik, UK.)

Wilson, T. , Wu, X. Y. , Juengel, J. L. , Ross, I. K. , and Lumsden, J. M. , et al. (2001). Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 64, 1225–1235.
PubMed |