Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

State of the art in the production of transgenic goats

H. Baldassarre A C , B. Wang A , C. L. Keefer B , A. Lazaris A and C. N. Karatzas A
+ Author Affiliations
- Author Affiliations

A Nexia Biotechnologies Inc., 1000 Ave. St. Charles Block ‘B’, Dorion-Vaudreuil, Quebec J7V 8P5, Canada.

B Present address: Department of Animal & Avian Science, University of Maryland, College Park, MD 20742-2311, USA.

C To whom correspondence should be addressed. email: hbaldassarre@nexiabiotech.com

Reproduction, Fertility and Development 16(4) 465-470 https://doi.org/10.1071/RD04028
Accepted: 23 March 2004   Published: 6 July 2004

Abstract

This review summarises recent advances in the field of transgenic goats for the purpose of producing recombinant proteins in their milk. Production of transgenic goats via pronuclear microinjection of DNA expression vectors has been the traditional method, but this results in low efficiencies. Somatic cell nuclear transfer has dramatically improved efficiencies in rates of transgenesis. Characterisation of transfected cells in vitro before use in nuclear transfer guarantees that kids born are transgenic and of predetermined gender. Using these platform technologies, several recombinant proteins of commercial interest have been produced, although none of them has yet gained marketing approval. Before these technologies are implemented in goat improvement programmes, efficiencies must be improved, costs reduced, and regulatory approval obtained for the marketing of food products derived from such animals.

Extra keywords: nuclear transfer, pronuclear microinjection, recombinant proteins.


References

Baguisi, A. , Behboodi, E. , Melican, D. T. , Pollock, J. S. , and Destrempes, M. M. , et al. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Baldassarre, H. , de Matos, D. G. , Furnus, C. C. , Castro, T. E. , and Cabrera Fischer, E. I. (1994). Technique for efficient recovery of sheep oocytes by laparoscopic folliculocentesis. Anim. Reprod. Sci. 35, 145–150.
Crossref | GoogleScholarGoogle Scholar |

Baldassarre, H. , Wang, B. , Gauthier, M. , Neveu, N. , and Mellor, S. , et al. (1999). Embryo transfer in a commercial transgenic production program using BELE® goat embryos. Theriogenology 51, 415.


Baldassarre, H. , Wang, B. , Gauthier, M. , Neveu, N. , and Mellor, S. , et al. (1999). Effects of timing of GnRH injection in the production of pronuclear stage BELE® goat embryos. Transgenic Res. 8(6), 492–493.


Baldassarre, H. , Wang, B. , Kafidi, N. , Keefer, C. L. , Lazaris, A. , and Karatzas, C. N. (2002). Advances in the production and propagation of transgenic goats using laparoscopic ovum pick-up and in vitro embryo production technologies. Theriogenology 57, 275–284.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Baldassarre, H. , Wang, B. , Kafidi, N. , Gauthier, M. , and Neveu, N., (2003a). Production of transgenic goats by pronuclear microinjection of in vitro produced zygotes from oocytes recovered by laparoscopy. Theriogenology , 831–839.
PubMed |

Baldassarre, H. , Keefer, C. L. , Wang, B. , Lazaris, A. , and Karatzas, C. N. (2003b). Nuclear transfer in goats using in vitro matured oocytes recovered by laparoscopic ovum-pick-up. Cloning Stem Cells 5, 279–285.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Celebi, C. , Guillaudeux, T. , Auvray, P. , Vallet-Erdtmann, V. , and Jégou, B. (2003). The making of transgenic spermatozoa. Biol. Reprod. 68, 1477–1483.
PubMed |

Cibelli, J. B. , Stice, S. L. , Golueke, P. J. , Kane, J. J. , Jerry, J. , Blackwell, C. , Ponce de Leon, F. A. , and Robl, J. M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–1258.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Clark, A. J. , Bessos, H. , Bishop, J. O. , Brown, P. , and Harris, S. , et al. (1989). Expression of human anti-haemophilic factor IX in the milk of transgenic sheep. Biotechnology 7, 487–492.


Cognié, Y. , Baril, G. , Poulin, N. , and Mermillod, (2003). Current status of embryo technologies in sheep and goat. Theriogenology 59, 171.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed |

Damak, S. , Su, H. , Jay, N. P. , and Bullock, D. W. (1996). Improved wool production in transgenic sheep expressing insulin-like growth factor 1.  Biotechnology 14, 185–188.
PubMed | | PubMed |

Ebert, K. M. , Selgrath, J. P. , DiTullio, P. , Denman, J. , Smith, T. E. , Memon, M. A. , Schindler, J. E. , Monastersky, G. M. , Vitale, J. A. , and Gordon, K. (1991). Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Biotechnology 9, 835–838.
PubMed | | PubMed |

Echelard, Y., Ziomek, C. A., and  Meade, H. M. (2000). Expression of recombinant proteins in the milk of transgenic goats. In ‘Proceedings of the 7th International Conference on Goats, Tours, France. 15–18 May 2000’.  pp. 25–29. (INRA: Tours, France.)

Golovan, S. P. , Meidinger, R. G. , Ajakaiye, A. , Cottrill, M. , and Wiederkehr, M. Z. , et al. (2001). Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol. 19, 741–745.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gordon, J. W. , Scangos, G. A. , Plotkin, D. J. , Barbosa, J. A. , and Ruddle, F. H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl Acad. Sci. USA , 7380–7384.
PubMed |

Hammer, R. E. , Pursel, V. G. , Rexroad, C. E. , Wall, R. J. , Bolt, D. J. , Ebert, K. M. , Palmiter, R. D. , and Brinster, R. L. (1985). Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680–683.
PubMed |

Haskell, R. E. , and Bowen, R. A. (1995). Efficient production of transgenic cattle by retroviral infection of early embryos. Mol. Reprod. Dev. 40, 386–390.
PubMed |

Hofmann, A. , Kessler, B. , Ewerling, S. , Weppert, M. , and Vogg, B. , et al. (2003). Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep. 4, 1054–1060.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jones, K. L. , Iqbal, M. J. , and Schrader, A. D. (2003). Gene expression in cloned bovine fetal liver. Cloning Stem Cells 5, 63–69.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Karatzas, C. N. , Zhou, J. F. , Huang, Y. , Duguay, F. , and Chretien, N. , et al. (1999). Production of recombinant spider silk (BioSteel®) in the milk of transgenic animals. Transgenic Res. 8, 476–477.


Keefer, C. L. , Baldassarre, H. , Keyston, R. , Wang, B. , and Bhatia, B. , et al. (2001). Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol. Reprod. 64, 849–856.
PubMed |

Keefer, C. L. , Keyston, R. , Lazaris, A. , Bhatia, B. , and Begin, I. , et al. (2002). Production of cloned goats after nuclear transfer using adult somatic cells. Biol. Reprod. 66, 199–203.
PubMed |

Kerr, D. E. , Plaut, K. , Bramley, A. J. , Williamson, C. M. , Lax, A. J. , and Moore, K. (2001). Lysostaphin expression in the mammary glands confers protection against staphylococcal infection in transgenic mice. Nat. Biotechnol. 19, 66–70.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Keskintepe, L. , Simplicio, A. A. , and Brackett, B. G. (1998). Caprine blastocyst development after in vitro fertilization with spermatozoa frozen in different extenders. Theriogenology 49, 1265.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed |

Koeman, J. , Keefer, C. L. , Baldassarre, H. , and Downey, B. R. (2003). Developmental competence of prepubertal and adult goat oocytes cultured in semi-defined media following laparoscopic recovery. Theriogenology 60, 879.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed |

Krimpenfort, P. , Rademakers, A. , Eyestone, W. , van der Schans, A. , and van den Broek, S. , et al. (1991). Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology 9, 844–847.


Kues, W. A. , Anger, M. , Carnwath, J. W. , Paul, D. , Motlik, J. , and Niemann, H. (2000). Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biol. Reprod. 62, 412–419.
PubMed |

McEvoy, T. G. , Sinclair, K. D. , Young, L. E. , Wilmut, I. , and Robinson, J. J. (2000). Large offspring syndrome and other consequences of ruminant embryo culture in vitro: relevance to blastocyst culture in human ART. Hum. Fertil. (Camb.) 3, 238–246.
PubMed |

Nottle, M. B., Nagashima, H., Verma, P. J., Du, Z. T. and  Grupen, C. G. , et al. (1999). Production and analysis of transgenic pigs containing a metallothionein porcine growth hormone gene construct. In ‘Transgenic Animals in Agriculture’. (Eds. J. D. Murray, G. B. Anderson, A. M. Oberbauer and M. M. McGloughlin)  pp. 145–156. (CABI Publishing: New York, USA.)

Peura, T. T. , Hartwich, K. M. , Hamilton, H. M. , and Walker, S. K. (2003). No differences in sheep somatic cell nuclear transfer outcomes using serum starved or actively growing donor granulosa cells. Reprod. Fertil. Dev. 15, 157–165.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schnieke, A. E. , Kind, A. J. , Ritchie, W. A. , Mycock, K. , Scott, A. R. , Ritchie, M. , Wilmut, I. , Colman, A. , and Campbell, K. H. S. (1997). Human Factor IX transgenic sheep produced by nuclear transfer of nuclei form transfected fetal fibroblasts. Science 278, 2130–2133.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wall, R. J. (1996). Transgenic livestock: Progress and prospects in the future. Theriogenology 45, 57–68.
Crossref | GoogleScholarGoogle Scholar |

Wall, R. J. , Hawk, H. W. , and Nel, N. (1992). Making transgenic livestock: genetic engineering on a large scale. J. Cell. Biochem. 49, 113–120.
PubMed |

Wang, B. , Baldassarre, H. , Tao, T. , Gauthier, M. , and Neveu, N. , et al. (2002). Transgenic goat founders produced by DNA pronuclear microinjection of in vitro derived zygotes. Mol. Reprod. Dev. 63, 437–443.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wheeler, M. B. , Bleck, G. T. , and Donovan, S. M. (2001). Transgenic alteration of sow milk to improve piglet growth and health. Reprod. Suppl. 58, 313–324.
PubMed |

Wheeler, M. B. , Walters, E. M. , and Clark, S. G. (2003). Transgenic animals in biomedicine and agriculture: outlook for the future. Anim. Reprod. Sci. 79, 265–289.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilmut, I. , Schuleke, A. E. , McWhir, J. , Kind, A. J. , and Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Crossref | GoogleScholarGoogle Scholar | PubMed |