Genetic screening of infertile men
David Cram A B D , Michael Lynch C , Moira K. O’Bryan A , Chelsea Salvado A , Robert I. McLachlan C and David M. de Kretser AA Monash Institute of Reproduction and Development, Monash University, 27–31 Wright St, Clayton, Australia.
B Monash IVF, Epworth Hospital, Richmond, Melbourne, Australia.
C Prince Henry’s Institute of Reproduction and Development, Department of Obstetrics and Gynaecology, Monash Medical Centre, Melbourne, Australia.
D To whom correspondence should be addressed. email: david.cram@med.monash.edu.au
Reproduction, Fertility and Development 16(5) 573-580 https://doi.org/10.1071/RD03097
Submitted: 21 October 2003 Accepted: 18 December 2003 Published: 22 July 2004
Abstract
Male infertility is an extraordinarily common medical condition, affecting 1 in 20 men. According to the World Health Organization, this condition is now considered to be a complex disease involving physical, genetic and environmental factors. With continuing advances in our understanding of male reproductive physiology and endocrinology, together with the availability of the complete sequence of the human genome and powerful functional genomic techniques, the stage is now set to identify the genes that are essential for spermatogenesis. Given that the process of spermatogenesis, from the germ cell to mature sperm, is complex, the challenge for research is to develop the strategies for identifying new genetic causes of idiopathic male infertility and defining genotypes associated with specific defects in semen parameters and testicular pathologies. Such information will form the basis of new genetic tests that will allow the clinician to make an accurate diagnosis of the male partner and a more informed decision about treatment options for the couple.
Acknowledgments
This work has been supported by grants from the National Health and Medical Research Council (NH&MRC) of Australia (#143786 and #241000), Andrology Australia and Monash IVF Pty Ltd. Moira O’Bryan is the recipient of an NH&MRC R. D. Wright Fellowship (#143781).
Bhasin, S. , Ma, K. , Sinha, I. , Limbo, M. , Taylor, W. E. , and Salehian, B. (1998). The genetic basis of male infertility. Endocrinol. Metab. Clin. North Am. 27, 783–805.
| PubMed |
Brown, S. , and Balling, R. (2001). Systematic approaches to mouse mutagenesis. Curr. Opin. Genet. Dev. 11, 268–273.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Chillon, M. , Casals, T. , Mercier, B. , Bassas, L. , and Lissens, W. , et al. (1995). Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N. Engl. J. Med. 332, 1475–1480.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cho, C. , Willis, W. D. , Goulding, E. H. , Jung-Ha, H. , Choi, Y. C. , Hecht, N. B. , and Eddy, E. M. (2001). Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat. Genet. 28, 82–86.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Colman, P. G. , McNair, P. , Margetts, H. , Schmidli, R. S. , Werther, G. A. , Alford, F. P. , Ward, G. M. , Tait, B. D. , Honeyman, M. C. , and Harrison, L. C. (1998). The Melbourne Pre-Diabetes Study: prediction of type 1 diabetes mellitus using antibody and metabolic testing. Med. J. Aust. 169, 81–84.
| PubMed |
Cooke, H. J. , and Saunders, P. T. (2002). Mouse models of male infertility. Nat. Rev. Genet. 3, 790–801.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cram, D. S. , Ma, K. , Bhasin, S. , Arias, J. , and Pandjaitan, M., , et al. (2000). Y chromosome analysis of infertile men and their sons conceived through intracytoplasmic sperm injection: vertical transmission of deletions and rarity of de novo deletions. Fertil. Steril. 74, 909–915.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cram, D. S. , O’Bryan, M. K. , and de Kretser, D. M. (2001). Male infertility genetics – the future. J. Androl. 22, 738–746.
| PubMed |
Dix, D. J. , Allen, J. W. , Collins, B. W. , Mori, C. , Nakamura, N. , Poorman-Allen, P. , Goulding, E. H. , and Eddy, E. M. (1996). Targeted gene disruption of Hsp70–2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc. Natl Acad. Sci. USA 93, 3264–3268.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Dowsing, A. T. , Yong, E. L. , Clark, M. , McLachlan, R. I. , de Kretser, D. M. , and Trounson, A. O. (1999). Linkage between male infertility and trinucleotide repeat expansion in the androgen-receptor gene. Lancet 354, 640–643.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Fernandes, S. , Huellen, K. , Goncalves, J. , Dukal, H. , and Zeisler, J., , et al. (2002). High frequency of DAZ1/DAZ2 gene deletions in patients with severe oligozoospermia. Mol. Hum. Reprod. 8, 286–298.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Foresta, C. , Moro, E. , and Ferlin, A. (2001a). Y chromosome microdeletions and alterations of spermatogenesis. Endocr. Rev. 22, 226–239.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Foresta, C. , Moro, E. , and Ferlin, A. (2001b). Prognostic value of Y deletion analysis. The role of current methods. Hum. Reprod. 16, 1543–1547.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Gianotten, J. , Hoffer, M. J. , De Vries, J. W. , Leschot, N. J. , Gerris, J. , and van der Veen, F. (2003). Partial DAZ deletions in a family with five infertile brothers. Fertil. Steril. 79, 1652–1655.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Habermann, B. , Mi, H. F. , Edelmann, A. , Bohring, C. , Backert, I. T. , Kiesewetter, F. , Aumuller, G. , and Vogt, P. H. (1998). DAZ (deleted in azoospermia) genes encode proteins located in human late spermatids and in sperm tails. Hum. Reprod. 13, 363A–369A.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jones, A. C. , Sampson, J. R. , Hoogendoorn, B. , Cohen, D. , and Cheadle, J. P. (2000). Application and evaluation of denaturing HPLC for molecular genetic analysis in tuberous sclerosis. Hum. Genet. 106, 663–668.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Katz, M. G. , Chu, B. , McLachlan, R. , Alexopoulos, N. I. , de Kretser, D. M. , and Cram, D. S. (2002). Genetic follow-up of male offspring born by ICSI, using a multiplex fluorescent PCR-based test for Yq deletions. Mol. Hum. Reprod. 8, 589–595.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kile, B. T. , Hentes, K. E. , Clark, A. T. , Nakamura, H. , and Sallinger, A. P., , et al. (2003). Functional genetic analysis of mouse chromosome 11. Nature 425, 81–86.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kuroda-Kawaguchi, T. , Skaletsky, H. , Brown, L. G. , Minx, P. J. , and Cordum, H. S., , et al. (2001). The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat. Genet. 29, 279–286.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Lahn, B. T. , and Page, D. C. (1997). Functional coherence of the human Y chromosome. Science 278, 675–680.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Lercher, M. J. , Urrutia, A. O. , and Hurst, L. D. (2003). Evidence that the human X chromosome is enriched for male-specific but not female-specific genes. Mol. Biol. Evol. 20, 1113–1116.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Liu, W. , Smith, D. I. , Rechtzigel, K. J. , Thibodeau, S. N. , and James, C. D. (1998). Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res. 26, 1396–1400.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Matzuk, M. M. , and Lamb, D. J. (2002). Genetic dissection of mammalian fertility pathways. Nat. Cell Biol. 4, s41–s49.Suppl
| PubMed |
Maurer, B. , and Simoni, M. (2000). Y chromosome microdeletion screening in infertile men. J. Endocrinol. Invest. 23, 664–670.
| PubMed |
Morahan, G. , and Morel, L. (2002). Genetics of autoimmune diseases in humans and in animal models. Curr. Opin. Immunol. 14, 803–811.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Najmabadi, H. , Huang, V. , Yen, P. , Subbarao, M. N. , and Bhasin, D. , et al. (1996). Substantial prevalence of microdeletions of the Y-chromosome in infertile men with idiopathic azoospermia and oligozoospermia detected using a sequence-tagged site-based mapping strategy. J. Clin. Endocrinol. Metab. 81, 1347–1352.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Nelms, K. A. , and Goodnow, C. C. (2001). Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15, 409–418.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Nolan, P. M. , Peters, J. , Strivens, M. , Rogers, D. , and Hagan, J., , et al. (2000). A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat. Genet. 25, 440–443.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Phillipson, G. T. , Petrucco, O. M. , and Matthews, C. D. (2000). Congenital bilateral absence of the vas deferens, cystic fibrosis mutation analysis and intracytoplasmic sperm injection. Hum. Reprod. 15, 431–435.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Print, C. G. , Loveland, K. L. , Gibson, L. , Meehan, T. , and Stylianou, A. , et al. (1998). Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc. Natl Acad. Sci. USA 95, 12424–12431.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ravnik-Glavac, M. , Atkinson, A. , Glavac, D. , and Dean, M. (2002). DHPLC screening of cystic fibrosis gene mutations. Hum. Mutat. 19, 374–383.
| PubMed |
Redondo, M. J. , Rewers, M. , Yu, L. , Garg, S. , Pilcher, C. C. , Elliott, R. B. , and Eisenbarth, G. S. (1999). Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. BMJ 318, 698–702.
| PubMed |
Repping, S. , Skaletsky, H. , Brown, L. , Van Daalen, S. K. , Korver, C. M. , Pyntikova, T. , Kuroda-Kawaguchi, T. , De Vries, J. W. , Oates, R. D. , and Silber, S. (2003). Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat. Genet. 35, 247–251.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ruggiu, M. , Speed, R. , Taggart, M. , McKay, S. J. , Kilanowski, F. , Saunders, P. , Dorin, J. , and Cooke, H. J. (1997). The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389, 73–77.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Saifi, G. M. , and Chandra, H. S. (1999). An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc. R. Soc. Lond. B. Biol. Sci. 266, 203–209.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Schlicker, M. , Schnulle, V. , Schneppel, L. , Vorob’ev, V. I. , and Engel, W. (1994). Disturbances of nuclear condensation in human spermatozoa: search for mutations in the genes for protamine 1, protamine 2 and transition protein 1. Hum. Reprod. 9, 2313–2317.
| PubMed |
Schultz, N. , Hamra, F. K. , and Garbers, D. (2003). A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc. Natl Acad. Sci. USA 100, 12201–12206.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Skaletsky, H. , Kuroda-Kawaguchi, T. , Minx, P. J. , Cordum, H. S. , and Hillier, L., , et al. (2003). The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Simoni, M. , Bakker, E. , Eurlings, M. C. , Matthijs, G. , Moro, E. , Muller, C. R. , and Vogt, P. H. (1999). Laboratory guidelines for molecular diagnosis of Y-chromosomal microdeletions. Int. J. Androl. 22, 292–299.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sun, C. , Skaletsky, H. , Birren, B. , Devon, K. , Tang, Z. , Silber, S. , Oates, R. , and Page, D. C. (1999). An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat. Genet. 23, 429–432.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Tanaka, H. , Miyagawa, Y. , Tsujimura, A. , Matsumiya, K. , Okuyama, A. , and Nishimune, Y. (2003). Single nucleotide polymorphisms in the protamine-1 and -2 genes of fertile and infertile human male populations. Mol. Hum. Reprod. 9, 69–73.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Venter, J. C. , Adams, M. D. , Myers, E. W. , Li, P. W. , and Mural, R. J. , et al. (2001). The sequence of the human genome. Science 291, 1304–1351.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Vogt, P. H. , Edelmann, A. , Kirsch, S. , Henegariu, O. , and Hirschmann, P., , et al. (1996). Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum. Mol. Genet. 5, 933–943.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ward, J. O. , Reinholdt, L. G. , Hartford, S. A. , Wilson, L. A. , Munroe, R. J. , Schimenti, K. J. , Libby, B. J. , O’Brien, M. , Pendola, J. K. , Eppig, J. , and Schimenti, J.C. (2003). Towards the genetics of mammalian reproduction: induction and mapping of gametogenesis mutants in mice. Biol. Reprod. 69, 1615–1625.
| PubMed |
Xiao, W. , and Oefner, P. J. (2001). Denaturing high-performance liquid chromatography: a review. Hum. Mutat. 17, 439–474.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Yu, Y. E. , Zhang, Y. , Unni, E. , Shirley, C. R. , Deng, J. M. , Russell, L. D. , Weil, M. M. , Behringer, R. R. , and Meistrich, M. L. (2000). Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc. Natl Acad. Sci. USA 97, 4683–4688.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zhao, M. , Shirley, C. R. , Yu, Y. E. , Mohapatra, B. , and Zhang, Y. , et al. (2001). Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol. Cell. Biol. 21, 7243–7255.
| Crossref | GoogleScholarGoogle Scholar | PubMed |