Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effect of ovariectomy and graft position on cryopreserved common wombat (Vombatus ursinus) ovarian tissue following xenografting to nude mice

M. Cleary A B C , M. C. J. Paris A , J. Shaw A , G. Jenkin A and A. Trounson A
+ Author Affiliations
- Author Affiliations

A Centre for Early Human Development, Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria 3168, Australia.

B Monash IVF, Level 4, Epworth Hospital, 89 Bridge Road, Richmond, Victoria 3121, Australia.

C To whom correspondence should be addressed. email: michelle.cleary@med.monash.edu.au

Reproduction, Fertility and Development 15(6) 333-342 https://doi.org/10.1071/RD03063
Submitted: 4 September 2003  Accepted: 18 November 2003   Published: 18 November 2003

Abstract

Ovarian tissue xenografting may be applied to increase the population size of rare or endangered animals. However, optimal grafting conditions, such as graft position and recipient hormonal status, are yet to be established. The present study, using common wombat ovarian tissue, showed that development of xenografted ovarian tissue to the antral follicle stage can be achieved irrespective of graft position. However, increased graft recovery rates and follicle survival were evident after grafting under the kidney capsule compared with grafting to subcutaneous sites. No increase in follicle development was observed after placing grafts both under the kidney capsule and subcutaneously in the one recipient compared with grafts placed under the kidney capsule alone or subcutaneously alone. Removal of the recipient’s own ovaries at the time of grafting accelerated graft follicle development, with antral follicles seen by Week 12 after grafting compared with by Week 16 in recipients that retained their own ovaries. More oocytes were collected from xenograft recipients receiving hormonal stimulation before collection compared with non-stimulated recipients. No oocytes were mature (extruded a polar body) at the time of collection or after a subsequent period of in vitro maturation. This is the first study to demonstrate that antral follicle development can occur and oocytes can be collected from xenografted common wombat ovarian tissue.

Extra keywords: marsupial


Acknowledgements

The authors thank VetrePharm (London, Ontario, Canada) for the kind donation of porcine FSH and LH, Alex Krstic and Ken and June Clements for their help with tissue collection and Anne O’Connor for running the FSH assay.


References

Breed, W. G. (1996). Egg maturation and fertilization in marsupials. Reprod. Fertil. Dev. 8, 617–643.
PubMed |

Candy, C. J. , Wood, M. J. , and Whittingham, D. G. (1995). Follicular development in cryopreserved marmoset ovarian tissue after transplantation. Hum. Reprod. 10, 2334–2338.
PubMed |

Candy, C. J. , Wood, M. J. , and Whittingham, D. G. (2000). Restoration of a normal reproductive lifespan after grafting of cryopreserved mouse ovaries. Hum. Reprod. 15, 1300–1304.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cleary, M. , Snow, M. , Paris, M. , Shaw, J. , Cox, S. L. , and Jenkin, G. (2001). Cryopreservation of mouse ovarian tissue following prolonged exposure to an Ischemic environment. Cryobiology 42, 121–133.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cleary, M. , West, M. , Shaw, J. , Jenkin, G. , and Trounson, A. (2003). In vitro maturation of oocytes from non-stimulated common wombats. Reprod. Fertil. Dev. 15, 303–310.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cox, S. L. , Shaw, J. , and Jenkin, G. (1996). Transplantation of cryopreserved fetal ovarian tissue to adult recipients in mice. J. Reprod. Fertil. 107, 315–322.
PubMed |

Cox, S. L. , Shaw, J. , and Jenkin, G. (2000). Follicular development in transplanted fetal and neonatal mouse ovaries is influenced by the gonadal status of the adult recipient. Fertil. Steril. 74, 366–371.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cushman, R. A. , Wahl, C. M. , and Fortune, J. E. (2002). Bovine ovarian cortical pieces grafted to chick embryonic membranes: a model for studies on the activation of primordial follicles. Hum. Reprod. 17, 48–54.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dissen, G. A. , Lara, H. E. , Fahrenbach, W. H. , Costa, M. E. , and Ojeda, S. R. (1994). Immature rat ovaries become revascularized rapidly after autografting and show a gonadotropin-dependent increase in angiogenic factor gene expression. Endocrinology 134, 1146–1154.
PubMed |

Gloor, E. , Juillard, E. , Curchod, A. , and Legeret, J. C. (1982). Ovarian hypoplasia with follicular calcifications. Am. J. Clin. Pathol. 78, 857–860.
PubMed |

Gook, D. A. , McCully, B. A. , Edgar, D. H. , and McBain, J. C. (2001). Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum. Reprod. 16, 417–422.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Goodman, L. M. (1934). Observations on transplanted immature ovaries in the eyes of adult male and female rats. Anat. Rec. 59, 223–252.


Gosden, R. G. , Baird, D. T. , Wade, J. C. , and Webb, R. (1994a). Restoration of fertility to oophorectomised sheep by ovarian autografts stored at −196°C. Hum. Reprod. 9, 597–603.
PubMed |

Gosden, R. G. , Boulton, M. I. , Grant, K. , and Webb, R. (1994b). Follicular development from ovarian xenografts in SCID mice. J. Reprod. Fertil. 101, 619–623.
PubMed |

Gunasena, K. T. , Lakey, J. R. , Villines, P. M. , Critser, E. S. , and Critser, J. K. (1997a). Allogeneic and xenogeneic transplantation of cryopreserved ovarian tissue to athymic mice. Biol. Reprod. 57, 226–231.
PubMed |

Gunasena, K. T. , Villines, P. M. , Critser, E. S. , and Critser, J. K. (1997b). Live births after autologous transplant of cryopreserved mouse ovaries. Hum. Reprod. 12, 101–106.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gunasena, K. T. , Lakey, J. R. , Villines, P. M. , Bush, M. , Raath, C. , Critser, E. S. , McGann, L. E. , and Critser, J. K. (1998). Antral follicles develop in xenografted cryopreserved African elephant (Loxodonta africana) ovarian tissue. Anim. Reprod. Sci. 53, 265–275.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Imthurn, B. , Cox, S. L. , Jenkin, G. , Trounson, A. O. , and Shaw, J. M. (2000). Gonadotrophin administration can benefit ovarian tissue grafted to the body wall: implications for human ovarian grafting. Mol. Cell. Endocrinol. 163, 141–146.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ishmael, J. (1975). Occurrence of calcium deposits in the ovaries of the baboon. Lab. Anim. 9, 383–386.
PubMed |

Jenkin, G. , Cox, S. L. , and Shaw, J. (1996). Transplantation of fetal ovarian tissue. Singapore J. Obstet. Gynecol. 27, 85–91.


Kaneko, H. , Kikuchi, K. , Noguchi, J. , Hosoe, M. , and Akita, T. (2003). Maturation and fertilization of porcine oocytes from primordial follicles by a combination of xenografting and in vitro culture. Biol. Reprod. 69, 1488–1493.
PubMed |

Kim, J. Y. , Kinoshita, M. , Ohnishi, M. , and Fukui, Y. (2001a). Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes. Reproduction 122, 131.
PubMed |

Kim, S. S. , Radford, J. , Harris, M. , Varley, J. , Rutherford, A. J. , Lieberman, B. , Shalet, S. , and Gosden, R. (2001b). Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum. Reprod. 16, 2056–2060.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liu, J. , Van der Elst, J. , Van den Broecke, R. , and Dhont, M. (2002). Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum. Reprod. 17, 605–611.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Majeed, S. K. , and Gopinath, C. (1980). Calcification in the adrenals and ovaries of monkeys. Lab. Anim. 14, 363–365.
PubMed |

Mattiske, D. , Shaw, G. , and Shaw, J. (2002). Influence of donor age on development of gonadal tissue from pouch young of the tammar wallaby, Macropus eugenii, after cryopreservation and xenografting into mice. Reproduction 123, 143–153.
PubMed |

Wells, R. T., and  Pridmore., P. A. (1998). ‘Wombats’  pp. 75–85. (Royal Zoological Society of South Australia: Adelaide, Australia.)

Nisolle, M. , Casanas-Roux, F. , Qu, J. , Motta, P. , and Donnez, J. (2000). Histologic and ultrastructural evaluation of fresh and frozen–thawed human ovarian xenografts in nude mice. Fertil. Steril. 74, 122–129.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nugent, D. , Meirow, D. , Brook, P. F. , Aubard, Y. , and Gosden, R. G. (1997). Transplantation in reproductive medicine: previous experience, present knowledge and future prospects. Hum. Reprod. Update 3, 267–280.
PubMed |

Oktay, K. , Newton, H. , Mullan, J. , and Gosden, R. G. (1998). Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle stimulating hormone. Hum. Reprod. 13, 1133–1138.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Parrott, D. M. V. (1960). The fertility of mice with orthotopic ovarian grafts derived from frozen tissue. J. Reprod. Fertil. 1, 230–241.


Rizos, D. , Fair, T. , Papadopoulos, S. , Boland, M. P. , and Lonergan, P. (2002). Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro.  Mol. Reprod. Dev. 62, 320–327.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Snow, M. , Cleary, M. , Cox, S. L. , Shaw, J. , Paris, M. , and Jenkin, G. (2001). Comparison of the effects of in vitro and in situ storage on the viability of mouse ovarian tissue collected after death. Reprod. Fertil. Dev. 13, 389–394.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Snow, M. , Cox, S. , Jenkin, G. , Trounson, A. , and Shaw, J. (2002). Generation of live young from xenografted mouse ovaries. Science 297, 2227.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sztein, J. , Sweet, H. , Farley, J. , and Mobraaten, L. (1998). Cryopreservation and orthotopic transplantation of mouse ovaries: new approach in gamete banking. Biol. Reprod. 58, 1071–1074.
PubMed |

Van den Broecke, R. , Liu, J. , Handyside, A. , Van der Elst, J. C. , Krausz, T. , Dhont, M. , Winston, R. M. , and Hovatta, O. (2001). Follicular growth in fresh and cryopreserved human ovarian cortical grafts transplanted to immunodeficient mice. Eur. J. Obstet. Gynecol. Reprod. Biol. 97, 193–201.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Weissman, A. , Gotlieb, L. , Colgan, T. , Jurisicova, A. , Greenblatt, E. M. , and Casper, R. F. (1999). Preliminary experience with subcutaneous human ovarian cortex transplantation in the NOD–SCID mouse. Biol. Reprod. 60, 1462–1467.
PubMed |

West, M. (2002). ‘The Oestrous Cycle and Manipulation of Reproduction in the Common Wombat (Vombatus ursinus)’. (Monash University: Melbourne, Australia.)

Wolvekamp, M. C. , Cleary, M. L. , Cox, S. L. , Shaw, J. M. , Jenkin, G. , and Trounson, A. O. (2001). Follicular development in cryopreserved common wombat ovarian tissue xenografted to nude rats. Anim. Reprod. Sci. 65, 135–147.
Crossref | GoogleScholarGoogle Scholar | PubMed |