Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

62 Will Gonadotropin-Releasing Hormone Treatment Hasten the Onset of Puberty in Peripubertal Heifers?

N. A. Castro A , C. E. Leonardi B , E. M. Zwiefehofer B , J. Singh B and G. P. Adams B
+ Author Affiliations
- Author Affiliations

A Universidade Federal de Pelotas, Capão do Leão, RS, Brazil;

B University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Reproduction, Fertility and Development 30(1) 170-170 https://doi.org/10.1071/RDv30n1Ab62
Published: 4 December 2017

Abstract

Treatment with gonadotropin-releasing hormone (GnRH) has been used to induce ovulation in prepubertal heifers. The objective of this study was to evaluate whether peripubertal heifers will continue to ovulate at regular intervals (i.e. attain puberty) after GnRH treatment. Prepubertal crossbred Hereford heifers, 11.0 ± 0.5 months of age, 344 ± 26 kg of body weight, and at random stages of ovarian follicular wave status, were assigned to 2 groups (age- and weight-matched) and given GnRH (n = 24) or no treatment (Control, n = 22) on Day 0. Ovarian ultrasonography was performed every second day from Day 0 to 44 to record the size of 2 largest follicles and the corpus luteum (CL). Thereafter, examinations were done every 4 days until the third ovulation or Day 100, whichever came first. The first and second interovulatory intervals (IOI) were categorized as short (<12 days), normal (16-24 days), or long (>24 days), and the onset of the puberty was defined by the occurrence of 2 consecutive short or normal IOI (i.e. 3 uninterrupted ovulations). Proportional data were compared among groups by chi-squared test. Single-point measurements were compared by analysis of variance and multiple comparisons were made using Tukey’s test. Two heifers (one in each group) failed to ovulate during the experiment. The diameter of the largest follicle on Day 0 did not differ (P = 0.31) between the GnRH and Control groups (12.6 ± 0.37 mm and 13.1 ± 0.29 mm, respectively). The proportion of heifers that ovulated by Day 4 after treatment was higher in the GnRH than in the Control group (9/24 v. 1/22; P < 0.01). However, the proportion of heifers in the GnRH v. Control groups that ovulated twice (19/24 v. 18/22; P = 0.60) or 3 times (9/24 v. 9/22; P = 0.81) did not differ. The age at first ovulation tended to be younger in the GnRH group than in the Control (12 ± 0.97 v. 13 ± 0.90 months; P = 0.07), but the effect was attributed only to those heifers that ovulated in response to GnRH treatment (n = 9). The age at first ovulation was 11.2 ± 0.50, 12.7 ± 0.73, and 12.6 ± 0.90 months in GnRH-responders, non-responders, and the control group, respectively (P < 0.0001). One heifer that ovulated in response to GnRH treatment failed to ovulate again during the study period (Day 100). In 87.5% (7/8) of the heifers that responded to GnRH treatment and ovulated at least twice, the first IOI was long (55.5 ± 8.3 days). When data were combined between the GnRH non-responders and the control group (n = 35), the first IOI was short (8.9 ± 0.4 days) in 77% of the heifers, and the second IOI was of normal length (18.8 ± 0.9 days) in 93% of heifers. The age at the second ovulation in GnRH responders (12.7 ± 0.3 months) was similar (P = 0.82) to the age at first ovulation in GnRH non-responders (12.9 ± 0.1 months) and the control group (12.7 ± 0.2 months), indicating that GnRH treatment did not hasten the onset of continuous cyclicity. In conclusion, although GnRH treatment induced first ovulation in some peripubertal heifers, treatment did not hasten the onset of puberty.

Research was supported by the Natural Sciences and Engineering Research Council of Canada.