265 HYALURONAN SYNTHESIS ABILITY OF PORCINE CUMULUS–OOCYTE COMPLEXES DERIVED FROM SMALL FOLLICLES
M. Nakakoji A and H. Funahashi ADepartment of Animal Science, Okayama University, Okayama, Japan
Reproduction, Fertility and Development 25(1) 280-280 https://doi.org/10.1071/RDv25n1Ab265
Published: 4 December 2012
Abstract
The degree of cumulus expansion, an important step in oocyte maturation, of porcine cumulus–oocyte complexes (COC) derived from small follicles (SF: 1 to 2 mm in diameter) is known to be lower than those derived from middle follicles (MF: 3 to 6 mm in diameter). The objective of this study was to compare the abilities of hyaluronan (HA) synthesis of COC from SF and MF. Furthermore, the effect of oestradiol during pre-incubation of COC on proliferation of the cumulus cells was examined. Cumulus–oocyte complexes from SF and MF of porcine ovaries were cultured for in vitro maturation [IVM, in modified porcine oocyte medium (Yoshioka et al. 2008 J. Reprod. Dev. 54, 208–213) supplemented with 50 µM β-mercaptoethanol, 10 IU mL–1 of eCG, 10 IU mL–1 of hCG, and 1 mM dbcAMP for 20 h and then in the fresh medium without those supplements for another 24 h]. Hyaluronan production was quantified at 20 h after the start of IVM with a commercial HA-ELISA kit (20 COC/tube × 4 times). The number of cumulus cells was assessed 0 and 20 h after the start of IVM (50 COC × 4 times). Furthermore, proliferation of cumulus cells was examined after pre-culture of COC (n = 40 COC × 5 times) in modified porcine oocyte medium with various concentrations of oestradiol (0, 0.1, 1, and 10 ng mL–1) for 6 h. Statistical analyses of results from 4 to 5 replicated trials were performed by ANOVA with a Bonferroni-Dunn post-hoc test (significance, P < 0.05). The degree of cumulus expansion of COC from MF (n = 152) was higher than that of COC from SF (n = 156). The incidence of metaphase-II oocytes was significantly lower in COC from SF (n = 133; 48.9%) than in COC from MF (n = 148; 74.7%). The HA content of COC was higher in those from MF (20.8 µg/COC) than in those from SF (10.8 µg/COC), whereas the content per cumulus cell was not different because the numbers of cumulus cells at 0 and 20 h were also higher in COC (n = 200 in each group) from MF (3.0 × 103 and 3.3 × 103 cells, respectively) than from SF (2.0 × 103 and 2.5 × 103 cells, respectively). Cumulus cells proliferated significantly in the presence of oestradiol, regardless of the concentration, during pre-incubation for 6 h (2.5 to 2.8 × 103 cells), as compared with the oestradiol-free controls (2.2 × 103 cells). These results demonstrate that the different abilities of cumulus expansion between COC (n = 200 in each group) from SF and MF may be due to the number of cumulus cells per COC. Pre-incubation in the presence of oestradiol stimulates the proliferation of cumulus cells and may improve the oocyte maturation of COC derived from SF.