Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

64 VALPROIC ACID ENHANCES IN VITRO DEVELOPMENT OF SOMATIC CELL NUCLEAR TRANSFER EMBRYOS IN PIGS

Y. J. Kim A , K. S. Ahn A , M. J. Kim A and H. Shim A
+ Author Affiliations
- Author Affiliations

Department of Nanobiomedical Science and WCU Research Center for Nanobiomedical Science, Dankook University,Cheonan, South Korea

Reproduction, Fertility and Development 22(1) 190-190 https://doi.org/10.1071/RDv22n1Ab64
Published: 8 December 2009

Abstract

Epigenetic modification influences reprogramming and subsequent development of somatic cell nuclear transfer embryos. Such modification includes an increase of histone acetylation and a decrease of DNA methylation in transferred donor nuclei. Histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) and valproic acid (VPA) have been known to maintain high cellular levels of histone acetylation. Hence, the treatment of HDACi to NT embryos may increase efficiency of cloning. Indeed, TSA treatment has significantly enhanced the developmental competence of nuclear transfer embryos in several species including pigs (Zhang et al. 2007 Cloning Stem Cells 9, 357-363; Li et al. 2008 Theriogenology 70, 800-808). Valproic acid, another type of HDACi, has often been used to assist reprogramming of somatic cells into induced pluripotent stem cells in mice. In the present study, we tested the potency of VPA compared with TSA on the enhancement of in vitro development in porcine nuclear transfer embryos. Reconstructed embryos were produced by transferring nuclei of adult ear skin fibroblasts into enucleated oocytes. After electrical activation, these embryos were cultured in PZM-3 containing no HDACi (control), 5 mM VPA, or 50 nM TSA for 24 h, and another 5 days thereafter without HDACi. At least 3 replicates were conducted for the following experiments. The rates of cleavage were not different among the VPA, TSA, and control groups. However, the rate of blastocyst development was significantly higher (P < 0.05) in embryos treated with VPA than in those treated with TSA and without HDACi (125/306, 40.8% v. 94/313, 30.0% v. 80/329, 24.3%). Differential staining of inner cell mass (ICM) and trophectoderm (TE) also supported the beneficial effect of VPA treatment in NT embryos. Compared with the control group, the number of TE cells was significantly increased (P < 0.05) in the VPA and TSA treatment groups (79.3 ± 7.4 v. 74.6 ± 9.2 v. 40.0 ± 6.7). Moreover, VPA treatment significantly increased (P < 0.05) the number of ICM cells compared with the control (15.6 ± 1.7 v. 10.8 ± 2.6), whereas no differences were observed between the TSA treatment and control group (12.9 ± 3.0 v. 10.8 ± 2.6). The present study demonstrates that VPA enhances in vitro development of nuclear transfer embryos, in particular by an increase of blastocyst formation and the number of ICM cells, suggesting that VPA may be more potent than TSA in supporting developmental competence of cloned embryos. However, long-term effects of different HDACi in the development of nuclear transfer embryos, including any adverse outcome from destabilizing epigenetic condition, remain to be determined by further in vivo embryo transfer studies.