208 EFFECT OF GDF8 AND SB-431542 ON PORCINE OOCYTE DURING IN VITRO MATURATION AND SUBSEQUENT EMBRYONIC DEVELOPMENT
J. D. Yoon A , E. Lee B and S.-H. Hyun AA Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea;
B Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Kangwon, Republic of Korea
Reproduction, Fertility and Development 28(2) 235-235 https://doi.org/10.1071/RDv28n2Ab208
Published: 3 December 2015
Abstract
Growth differentiation factor-8 (GDF8) is a member of the transforming growth factor-β that has been identified as a strong physiological regulator. SB-431542 (SB) is a specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors such as ALK4, ALK5, and ALK7. The purpose of this study is investigation of the effects of GDF8 and SB on porcine oocytes during in vitro maturation and subsequent embryonic development. We first performed ELISA to detect GDF8 concentrations in follicular fluid for each size of follicle; sizes were as follows: small (<3 mm), medium (>3 mm and <6 mm), and large (>6 mm) follicle. After detection of the GDF8 concentration in follicular fluid, we investigated the effect of GDF8 and SB treatment during in vitro maturation (IVM) on nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels, and embryonic development after IVF and parthenogenetic activation (PA). Data were analysed by ANOVA followed by Duncan using SPSS (Statistical Package for Social Science, IBM, New York, NY, USA) mean ± SEM. The ELISA result showed different concentrations of GDF8 for each grade of follicular fluid: small, 0.479 ng mL–1; medium, 0.668 ng mL–1; and large, 1.318 ng mL–1. During the IVM process, 1.318 ng mL–1 of GDF8 and 5 ng mL–1 of SB were added to the maturation medium as control, SB, SB+GDF8, and GDF8 treatment groups. After 44 h of IVM, GDF8 group (90.4%) showed a significantly higher nuclear maturation rate than control and SB+GDF8 groups (85.4 and 81.7%). The SB group (78.9%) showed significantly reduced nuclear maturation rate compared with control (P < 0.05). The GDF8 treatment group showed a significant decreased intracellular ROS and increased GSH levels compared with other groups (P < 0.05). The SB+GBF8 treatment group showed a significantly better cytoplasmic maturation than the SB treatment group. In the PA embryonic development analysis, the GDF8 treatment group showed a significantly higher blastocyst formation rate compared with other groups (47.9, 37.2, 46.4, and 58.7% respectively; P < 0.05). In the IVF embryonic development analysis, the GDF8 treatment groups showed significantly higher blastocyst formation rate compared with the SB group (28.2 and 42.2%, respectively; P < 0.05). In conclusion, treatment with GDF8 during porcine oocyte IVM improved the embryonic developmental competence via increased cytoplasmic maturation and led to better oocyte maturation from the ALK receptor inhibition by SB.