258 IMPACT OF MILRINONE AND FORSKOLIN ON THE EFFICIENCY AND QUALITY OF BOVINE OOCYTE IN VITRO MATURATION
E. Stachowiak A , K. Papis A , J. Karasiewicz A and J. A. Modlinski AInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
Reproduction, Fertility and Development 25(1) 277-277 https://doi.org/10.1071/RDv25n1Ab258
Published: 4 December 2012
Abstract
The efficiency of in vitro maturation (IVM) of bovine oocytes remains inferior compared with maturation in vivo. Recently, some modifications of in vitro maturation (IVM) procedures have been proposed, such as simulated physiological maturation (Gilchrist 2011 Reprod. Fertil. Dev. 23, 23–31). In our experiment, a comparison of the traditional IVM efficiency with maturation after oocyte meiosis inhibition using roscovitine or with a modified two-step maturation using forskolin (cyclic adenosine monophosphate stimulator) and milrinone (type-3 phosphodiesterase inhibitor) was performed. Control oocytes obtained from slaughterhouse-derived ovaries were subjected to the traditional 24-h maturation in TCM-199 medium supplemented with sodium pyruvate, l-glutamine, gentamicin, 10% FCS, and hormones (pregnant mare’s serum gonadotropin and hCG, PG 600, Intervet, Kenilworth, NJ, USA). The roscovitine (50 µM, 24 h) inhibitory treatment was accomplished in the same medium (without hormones) and subsequently, traditional 24-h IVM was performed. The same TCM-199 medium (with hormones) supplemented with forskolin (100 µM) and milrinone (50 µM) was used for the first step (17 h) of the two-step maturation, whereas the second step (7 h) was performed in the same TCM-199 medium devoid of forskolin and milrinone. Fertilization with frozen sperm processed using TALP media was performed in TALP supplemented with heparin, penicillamine, hypotaurine, epinephrine, and BSA. In vitro culture of presumptive zygotes was performed in CR1aa medium. Portions of oocytes from all treatments after maturation and after fertilization procedures were stained and subjected to microscopic analysis. There were no differences in terms of maturation and fertilization rates between treatments. However, roscovitine-mediated inhibition of maturation performed in our experimental conditions was efficient and reversible, but harmful for subsequent embryo development. On the other hand, two-step maturation was equally as efficient as (but not better than) traditional IVM in all aspects examined in the present study (Table 1). In conclusion, the forskolin and milrinone combined treatment during the IVM procedure gives hope for fully efficient IVM. However, to achieve this goal, more research is necessary.