75 RABBIT NUCLEAR TRANSFER WITH CULTURED SOMATIC CELLS
F. Yang A , B. Kessler A , S. Ewerling A , E. Wolf A and V. Zakhartchenko AAMolecular Animal Breeding and Biotechnology, University of Munich, Munich, Germany. Email: F.Yang@gen.vetmed.uni-muenchen.de
Reproduction, Fertility and Development 17(2) 187-187 https://doi.org/10.1071/RDv17n2Ab75
Submitted: 1 August 2004 Accepted: 1 October 2004 Published: 1 January 2005
Abstract
Cloned rabbits have been obtained by somatic cell nuclear transfer (SCNT) only with fresh, non-cultured cumulus cells (Chesne et al. 2002 Nat. Biotechnol. 20, 366–369). For the purpose of generating transgenic animals by SCNT, donor cells must be cultured and modified prior to use as nuclear donors. The objective of this study was to optimize the SCNT procedure using cultured cumulus or fibroblast cells. MII oocytes were harvested from superovulated Zika rabbits, and maternal chromosomes were removed by demecolcine-assisted enucleation (Yin et al. 2002 Biol. Reprod. 67, 442–446). Two types of somatic cells originating from Ali/Bass rabbits were used as nuclear donors: cumulus cells collected from in vivo-matured oocytes and cultured for 1–5 passages, and primary fetal fibroblasts obtained from Day 16 fetuses and grown to confluence or starved for 4–5 days. Somatic donor cells and recipient cytoplasts were fused with 2 electric pulses (1.95 kV/cm, 25 μs each, 1 s interval). Twenty to 40 min after fusion, cloned embryos were activated first with the same electropulses as for fusion, and then immediately followed by 1 h incubation in 2 mM 6-dimethylaminopurine and 5 μg/mL cytochalasin B in culture medium (B2 medium supplemented with 10% FCS). Cloned embryos were either transferred at the 2- and 4-cell stage to asynchronized recipients or cultured in vitro for 6 days. Data were compared using chi-square test, and differences were considered significant when P < 0.05. Our results demonstrate that cloned rabbits can be produced by SCNT with cultured cells but the efficiency of this technique is still very low irrespective of the type of donor cells.
This research was supported by the Therapeutic Human Polyclonals, Inc.