Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

137 EFFECT OF THE ADDITION OF FOLIC ACID TO MATURATION AND CULTURE MEDIA ON DEVELOPMENT OF THE BOVINE BLASTOCYST AND ITS SURVIVAL RATE AFTER FREEZE-THAWING

S. Sato A , O. Dochi A and K. Imai A
+ Author Affiliations
- Author Affiliations

Rakuno Gakuen University, Ebetsu, Hokkaido, Japan

Reproduction, Fertility and Development 29(1) 177-177 https://doi.org/10.1071/RDv29n1Ab137
Published: 2 December 2016

Abstract

Reactive oxygen species (ROS) are the main causes of cell damage in bovine embryos in vitro. Folic acid (FA) is an antioxidant that protects cells from ROS. We studied the effect of the addition of FA to maturation and culture media on development of bovine blastocysts and their survival rate after freeze-thawing. Cell-oocyte complexes (COC) were allowed to mature in HEPES (25 mM)-buffered TCM199 (TCM199) supplemented with 5% calf serum (CS), 0.02 AU mL−1 of FSH, and FA (0, 2.5, 25, and 50 µM) for 20 hours (20–25 COC/100-µL droplet of the medium). After 6 hours of gamete co-culture (5 × 106 sperm/mL), presumptive zygotes were cultured in CR1aa medium supplemented with 5% CS and FA (0, 2.5, 25, and 50 μM) for 9 days (day of fertilization = Day 0). Expanded blastocysts that developed from Day 7 to 9 were frozen for further study. Each embryo was frozen in Dulbecco’s PBS (D-PBS) supplemented with 20% CS, 1.5 M ethylene glycol (EG), and 0.1 M sucrose (SUC). Embryos were equilibrated with their freezing medium for 15 min and loaded individually into a 0.25-mL straw. These straws were put into the cooling chamber of a programmable freezer precooled at −7°C. After 2 min, straws were seeded and held for 13 min at −7°C. Next, straws were cooled to −30°C at −0.3°C/min before being plunged into liquid nitrogen. Frozen embryos were thawed by allowing straws to stand in air for 7 s and warming them in a 30°C water bath for 20 s. Thawed embryos were washed twice with D-PBS supplemented with 20% fetal calf serum (FCS), which was warmed to 38°C. They were immersed into the same medium at 38°C for 10 min, and each embryo was cultured in a 20-μL droplet of TCM199 supplemented with 10% FCS and 0.1 mM β-mercaptoethanol (TCM-199-βME) for 72 h. Embryo cleavage rate was observed at 55 h post-insemination. Blastocyst rates were analysed at 9 days post-insemination. Rates of embryos developing into reexpanded, hatching, and hatched blastocyst stages were determined after 72 h of thawing. All data were analysed by the chi-square test and Fisher’s exact test. Cleavage and blastocyst rates after insemination at 55 hours and 9 days, respectively, were not significantly different among media containing 0 μM (n = 278; 74.1% and 39.9%), 2.5 μM (n = 260; 74.2% and 45.8%), 25 μM (n = 258; 75.6% and 45.7%), and 50 μM (n = 253; 76.3% and 42.7%) FA. Survival and hatching rates of frozen and thawed expanded blastocysts after 72 h in culture were 62.5% and 56.3%, respectively, in 0 μM FA (n = 16); 85.2% and 74.1% in 2.5 μM FA (n = 27); 66.7% and 62.5% in 25 μM FA (n = 24); and 68.0% and 64.0% in 50 μM FA (n = 25). Blastocysts cultured in media containing 2.5 μM FA tended to have a higher survival rate than those cultured in media containing 0 μM FA, although this difference was not significant (P = 0.09). Inclusion of FA did not appear to influence development or post-thaw survival of bovine blastocysts produced in vitro.