Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

176 IN VITRO MATURATION OF DOG OOCYTES IN CANINE FOLLICULAR FLUID

K. Reynaud A , S. Canguilhem A , S. Thoumire A and S. Chastant-Maillard B
+ Author Affiliations
- Author Affiliations

A Alfort Veterinary School, Maisons-Alfort, France;

B Toulouse National Veterinary School, Toulouse, France

Reproduction, Fertility and Development 26(1) 202-202 https://doi.org/10.1071/RDv26n1Ab176
Published: 5 December 2013

Abstract

In the canine species, assisted reproductive technologies, especially in vitro maturation (IVM) and IVF, are still ineffective. The main limiting factor remains the immaturity of the oocytes collected from anestrus ovaries. The ability of an oocyte to reach the MII stage in vitro is linked to the diameter of its follicle and anestrus oocytes, collected from small (<1 mm) follicles, are profoundly immature (De Lesegno et al. 2008). The objective of this study was to improve cytoplasmic quality by mimicking in vivo conditions; that is, to test the effect of pure preovulatory follicular fluid (FF) on survival and IVM rates of anestrus dog oocytes, in order to improve the nuclear and cytoplasmic maturation of these immature oocytes. Follicular fluids samples were collected from 54 Beagle bitches at 2 stages: before the LH peak (n = 23 bitches) and after the LH peak (n = 31 bitches). Only follicular fluid samples from large (>4 mm) follicles were collected and pooled by stage. Control oocytes were matured in 20% FCS/M199 medium. Groups of 5 oocytes were in vitro matured in 30 μL of follicular fluid, in half-area 96-well plates (5% CO2, 38°C). After 72 h of IVM, oocytes were denuded, fixed, and stained for DNA and tubulin before observation by confocal microscopy, and nuclear stages were classified as GV-A to GV-E, MI, and MII (Reynaud et al. 2012). A total of 460 oocytes were collected from 13 anestrus bitches and allocated to either the control medium (n = 155), the Pre-LH FF (n = 145) or the Post-LH FF (n = 160) groups. After 72 h of IVM, the morphology of the cumulus–oocyte complexes (COC) in the post-LH group was different from that of the others: cumulus cells appeared more compact and darker. Analysis of the nuclear stages showed that the degeneration rate was significantly higher (P < 0.05) in the post-LH group (58.7%) than in the pre-LH (40.9%) or in the control group (34.4%). No significant differences (P > 0.05) were observed between the 3 groups in the rate of immature GVA-B oocytes (36.4, 28.5, and 25.3% in the control, Pre-LH, and Post-LH groups, respectively), in the rate of meiotic resumption (GV-C/D/E, MI, MII stages, 44.4, 51.9, and 38.7% in the control, Pre-LH, and Post-LH groups, respectively). Metaphase II rates were not significantly different (12.1, 8.6, and 4.8% in the control, Pre-LH, and Post-LH groups, respectively). In conclusion, canine COC may survive when exposed to IVM in pure follicular fluid, but the degeneration rate was higher in the post-LH group. The presence of follicular fluid did not inhibit meiosis resumption, but did not significantly improve IVM rates. To better mimic in vivo conditions, IVM in a sequence of media, such as IVM in follicular fluid followed by IVM in oviducal fluid remains to be tested.