The status and conservation needs of the Micronesian Megapode (Megapodius laperouse laperouse) across the Mariana archipelago
Paul M. Radley A D * , Richard J. Camp B E , Frederick A. Amidon C , Ann P. Marshall C , P. Marcos Gorresen B and Curt Kessler CA
B
C
D Present address:
E Present address:
Abstract
Accurate baseline data for wildlife populations are important to track trends of these populations over time and to identify threats to their long-term persistence.
We aimed to assess the status and distribution of the little studied megapode (Megapodius laperouse laperouse) across the Mariana Islands.
Using passive and call playback facilitated surveys in 2008 through 2010, we employed point–transect distance sampling to assess island-level and archipelago-wide status of this megapode. To assess conservation needs, we defined human presence as the current, recent, or intermittent occurrence of humans on islands.
We recorded 657 megapode detections and estimated an archipelago level abundance of 11,542 individuals (95% CI: 5456–17,623) from 699 sampling points across 10 islands. Three islands supported 86% of the megapode population, but cumulatively comprise only 2% of the archipelago’s land area.
Micronesian Megapodes preferred native forest. Human presence and the availability of native forest may limit their abundance and distribution in the Mariana Islands. Although the probability of detecting megapodes was significantly greater on islands without high human presence, significantly more detections were recorded in forests with dense or closed understory on those islands that supported greater human populations.
Given their status and confined distribution in the Mariana Islands, additional studies investigating megapode incubation sites and movement within and between islands would provide fundamental information on megapode ecology and enhance conservation efforts. Continued and expanded ungulate removal, predator control, and habitat restoration would further enhance the likelihood of megapode persistence in the archipelago.
Keywords: distance sampling, human presence, Mariana archipelago, Mariana Islands, Megapodius laperouse, Micronesian Megapode, native forest, occupancy.
References
Amidon F, Camp R, Marshall A, Kessler C, Radley P, Buermeyer K, Gorresen M (2010) Micronesian Megapode survey assessment: Aguiguan 2009. In ‘Status of the Micronesian Megapode in the Commonwealth of the Northern Mariana Islands’. (Eds FA Amidon, AP Marshall, CC Kessler) p. 32. Appendix 4. (U.S. Fish and Wildlife Service, Marianas Expedition Wildlife Surveys 2010: Honolulu, Hawaii)
Ando H (2019) Genetic and ecological conservation issues for oceanic island birds, revealed by a combination of the latest molecular techniques and conventional field work. Ecological Research 34, 255-264.
| Crossref | Google Scholar |
Baker RH (1951) The avifauna of Micronesia, its origin, evolution, and distribution. University of Kansas Publications, Museum of Natural History 3, 1-359.
| Google Scholar |
BirdLife International (2021) Megapodius laperouse (errata version published 2022). The IUCN red list of threatened species 2021. Available at https://dx.doi.org/10.2305/IUCN.UK.2021-3.RLTS.T22678620A191672833.en. [accessed 23 April 2024]
Bowen J (1996) Notes on the Vanuatu Megapode Megapodius layardi on Ambrym, Vanuatu. Bird Conservation International 6, 401-408.
| Crossref | Google Scholar |
Buckland ST, Summers RW, Borchers DL, Thomas L (2006) Point transect sampling with traps or lures. Journal of Applied Ecology 43, 377-384.
| Crossref | Google Scholar |
Craig RJ (2021) The structure and dynamics of endangered forest bird communities in the Mariana Islands. Pacific Science 75, 543-559.
| Crossref | Google Scholar |
Dalsgaard B, Hilton GM, Gray GAL, Aymer L, Boatswain J, Daley J, Fenton C, Martin J, Martin L, Murrain P, Arendt WJ, Gibbons DW, Olesen JM (2007) Impacts of a volcanic eruption on the forest bird community of Montserrat, Lesser Antilles. Ibis 149, 298-312.
| Crossref | Google Scholar |
Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR (2016) Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences 113, 11261-11265.
| Crossref | Google Scholar |
Falanruw MVC (1975) Distribution of the Micronesian Megapode Megapodius laperouse in the Northern Mariana Islands. Micronesica 11, 149-150.
| Google Scholar |
Fancy SG, Craig RJ, Kessler CT (1999) Forest bird and fruit bat populations on Sarigan, Mariana Islands. Micronesica 31, 247-254.
| Google Scholar |
Fordham DA, Brook BW (2010) Why tropical island endemics are acutely susceptible to global change. Biodiversity and Conservation 19, 329-342.
| Crossref | Google Scholar |
Forsman ED, Meslow EC, Strub MJ (1977) Spotted owl abundance in young versus old-growth forests, Oregon. Wildlife Society Bulletin 5, 43-47.
| Google Scholar |
Göth A, Vogel U (1999) Notes on breeding and conservation of birds on Niuafo’ou Island, Kingdom of Tonga. Pacific Conservation Biology 5, 103-114.
| Crossref | Google Scholar |
Göth A, Vogel U (2002) Chick survival in the megapode Alectura lathami (Australian Brush-turkey). Wildlife Research 29, 503-511.
| Crossref | Google Scholar |
Göth A, Vogel U (2003) Juvenile dispersal and habitat selectivity in the megapode Alectura lathami (Australian Brush-turkey). Wildlife Research 30, 69-74.
| Crossref | Google Scholar |
Guyann DC, Jr, Downing RL, Askew GR (1985) Estimating the probability of non-detection of low density population. Cryptozoology 4, 55-60.
| Google Scholar |
Harris RB, Birks SM, Leaché AD (2014) Incubator birds: biogeographical origins and evolution of underground nesting in megapodes (Galliformes: Megapodiidae). Journal of Biogeography 41, 2045-2056.
| Crossref | Google Scholar |
Heaney LR (2007) Is a new paradigm emerging for oceanic island biogeography? Journal of Biogeography 34, 753-757.
| Crossref | Google Scholar |
Jansen R, Little RM, Crowe TM (2000) Habitat utilization and home range of the redwing francolin, Francolinus levaillantii, in highland grasslands, Mpumalanga province, South Africa. African Journal of Ecology 38, 329-338.
| Crossref | Google Scholar |
Jansen R, Robinson ER, Little RM, Crowe TM (2001) Habitat constraints limit the distribution and population density of redwing francolin, Francolinus levaillantii, in the highland grasslands of Mpumalanga province, South Africa. African Journal of Ecology 39, 146-155.
| Crossref | Google Scholar |
Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology 5, e157.
| Crossref | Google Scholar | PubMed |
Jones DN (1999) What we don’t know about megapodes. Zoologische Verhandelingen 327, 159-168.
| Google Scholar |
Kessler CC (2002) Eradication of feral goats and pigs and consequences for other biota on Sarigan Island, Commonwealth of the Northern Mariana Islands. In ‘Turning the tide: the eradication of invasive species’. (Eds CR Veitch, MN Clout) pp. 132–140. (IUCN SSC Invasive Species Specialist Group: Gland, Switzerland and Cambridge: U.K.)
Kumar A, Sharma DK, Lochan R, Dewan S, Negi S (2020) Relative abundance, habitat preference, and breeding ecology of Asian Black francolin, Francolinus francolinus asiae (Bonaparte, 1856) (Galliformes: Phasianidae) from North-Western Himalaya. Journal of Asia-Pacific Biodiversity 13, 162-168.
| Crossref | Google Scholar |
Loope LL, Howarth FG, Kraus F, Pratt TK (2001) Newly emergent and future threats of alien species to Pacific landbirds and ecosystems. Studies in Avian Biology 22, 291-304.
| Google Scholar |
Lusk MR, Bruner P, Kessler C (2000) The avifauna of Farallon de Medinilla, Mariana Islands. Journal of Field Ornithology 71, 22-33.
| Crossref | Google Scholar |
MacKenzie DI, Bailey LL (2004) Assessing the fit of site-occupancy models. Journal of Agricultural, Biological, and Environmental Statistics 9, 300-318.
| Crossref | Google Scholar |
Mapel XM, Gyllenhaal EF, Modak TH, DeCicco LH, Naikatini A, Utzurrum RB, Seamon JO, Cibois A, Thibault J-C, Sorenson MD, Moyle RG, Barrow LN, Andersen MJ (2021) Inter- and intra-archipelago dynamics of population structure and gene flow in a Polynesian bird. Molecular Phylogenetics and Evolution 156, 107034.
| Crossref | Google Scholar | PubMed |
Mori A (2019) A history of the excluded: rethinking the sugar industry in the Northern Mariana Islands under Japanese Rule. Historische Anthropologie 27, 410-434.
| Crossref | Google Scholar |
Mori E, Lazzeri L, Ferretti F, Gordigiani L, Rubolini D (2021) The wild boar Sus scrofa as a threat to ground-nesting bird species: an artificial nest experiment. Journal of Zoology 314, 311-320.
| Crossref | Google Scholar |
Office for Coastal Management (2023) C-CAP Regional Land Cover. NOAA National Centers for Environmental Information. Available at https://www.fisheries.noaa.gov/inport/item/48256
Olsen AR, Eberdong M, Ketebengang H, Blailes P, Chen P-H (2016) Survey of megapode nesting mounds in Palau, Micronesia. Western Birds 47, 27-37.
| Google Scholar |
O’Daniel D, Krueger S (1999) Recent sightings of the Micronesian Megapode on Tinian, Mariana Islands. Micronesica 31, 301-307.
| Google Scholar |
Perry G, Morton JM (1999) Regeneration rates of the wood vegetation of Guam’s Northwest Field following major disturbance: land use patterns, feral ungulates, and cascading effects of the brown treesnake. Micronesica 31, 125-142.
| Google Scholar |
Pratt HD, Bruner PL (1978) Micronesian Megapode rediscovered on Saipan. Elepaio 39, 57-59.
| Google Scholar |
Pregill GK, Steadman DW (2009) The prehistory and biogeography of terrestrial vertebrates on Guam, Mariana Islands. Diversity and Distributions 15, 983-996.
| Crossref | Google Scholar |
Presidential Documents (2009) Proclamation No. 8335: establishment of the marianas trench marine national monument. Federal Register 74, 1557-1563.
| Google Scholar |
Radley PM, Davis RA, Dekker RWRJ, Molloy SW, Blake D, Heinsohn R (2018) The vulnerability of Megapodes (Megapodiidae, Aves) to climate change and related threats. Environmental Conservation 45, 396-406.
| Crossref | Google Scholar |
Radley PM, Davis RA, Doherty TS (2021a) Impacts of invasive rats and tourism on a threatened island bird: the Palau Micronesian Scrubfowl. Bird Conservation International 31, 206-218.
| Crossref | Google Scholar |
Radley PM, van Etten EJB, Blake D, Davis RA (2021b) Breeding and feeding habitat selection by an island endemic bird may increase its vulnerability to climate change. Biotropica 53, 422-432.
| Crossref | Google Scholar |
Reed JM (1996) Using statistical probability to increase confidence of inferring species extinction. Conservation Biology 10, 1283-1285.
| Crossref | Google Scholar |
Reynolds MH, Snetsinger TJ (2001) The Hawaii rare bird search 1994–1996. Studies in Avian Biology 22, 133-143.
| Google Scholar |
Sanders HN, Hewitt DG, Perotto-Baldivieso HL, Vercauteren KC, Snow NP (2020) Opportunistic predation of Wild Turkey nests by wild pigs. The Journal of Wildlife Management 84, 293-300.
| Crossref | Google Scholar |
Scott JM, Mountainspring S, Ramsey FL, Kepler CB (1986) Forest bird communities of the Hawaiian Islands: their dynamics, ecology, and conservation. Studies in Avian Biology 9, 1-431.
| Google Scholar |
Şekercioğlu CH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proceedings of the National Academy of Sciences 101, 18042–18047. 10.1073/pnas.0408049101
Simberloff D (2000) Extinction-proneness of island species – causes and management implications. Raffles Bulletin of Zoology 48, 1-9.
| Google Scholar |
Sinclair JR (2002) Selection of incubation mound sites by three sympatric megapodes in Papua New Guinea. The Condor 104, 395-406.
| Crossref | Google Scholar |
Sitters J, Andriuzzi WS (2019) Impacts of browsing and grazing ungulates on soil biota and nutrient dynamics. In ‘The ecology of browsing and grazing II, vol. 239’. Ecological Studies. (Eds I Gordon, H Prins) pp. 215–236. doi:10.1007/978-3-030-25865-8_9
Steadman DW (1999) The prehistory of vertebrates, especially birds, on Tinian, Aguiguan, and Rota, Northern Mariana Islands. Micronesica 31, 319-345.
| Google Scholar |
Tershy BR, Shen K-W, Newton KM, Holmes ND, Croll DA (2015) The importance of islands for the protection of biological and linguistic diversity. BioScience 65, 592-597.
| Crossref | Google Scholar |
Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5-14.
| Crossref | Google Scholar | PubMed |
U.S. Forest Service (2006) Saipan/Rota/Tinian_Release. 2nd edn. U.S. Department of Agriculture Forest Service, Region 5 State and Private Forestry, Forest Health Protection. Available at https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fsbdev3_045361.zip
USFWS (1970) Conservation of endangered species and other fish and wildlife. Federal Register 35, 8491-8498.
| Google Scholar |
Wiles GJ (2005) Decline of a population of wild seeded breadfruit (Artocarpus mariannensis) on Guam, Mariana Islands. Pacific Science 59, 509-522.
| Crossref | Google Scholar |
Wiles GJ, Conry PJ (1990) Terrestrial vertebrates of the Ngerukewid Islands Wildlife Preserve, Palau islands. Micronesica 23, 41-66.
| Google Scholar |
Wiles GJ, Conry PJ (2001) Characteristics of nest mounds of Micronesian Megapodes in Palau. Journal of Field Ornithology 72, 267-275.
| Crossref | Google Scholar |
Wiles GJ, Beck RE, Amerson AB (1987) The Micronesian Megapode on Tinian, Mariana Islands. Elepaio 47, 1-3.
| Google Scholar |