Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE (Open Access)

Skinks of Oceania, New Guinea, and Eastern Wallacea: an underexplored biodiversity hotspot

Alex Slavenko https://orcid.org/0000-0002-3265-7715 A B , Allen Allison C , Christopher C. Austin D , Aaron M. Bauer E , Rafe M. Brown F , Robert N. Fisher https://orcid.org/0000-0002-2956-3240 G , Ivan Ineich https://orcid.org/0000-0003-1235-1505 H , Bulisa Iova I , Benjamin R. Karin J , Fred Kraus K , Sven Mecke https://orcid.org/0000-0003-0085-3364 L , Shai Meiri https://orcid.org/0000-0003-3839-6330 M , Clare Morrison N O , Paul M. Oliver N O , Mark O’Shea https://orcid.org/0000-0002-1566-7460 P , Jonathan Q. Richmond G , Glenn M. Shea https://orcid.org/0000-0002-0052-4205 Q R , Oliver J. S. Tallowin S and David G. Chapple https://orcid.org/0000-0002-7720-6280 T *
+ Author Affiliations
- Author Affiliations

A Macroevolution and Macroecology Group, Fenner School of Environment & Society, The Australian National University, Acton, Canberra, ACT 0200, Australia.

B Cesar Australia, Brunswick, Vic. 3056, Australia.

C Bernice P. Bishop Museum, Honolulu, HI 96817, USA.

D Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

E Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA 19085, USA.

F Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS 66044, USA.

G U.S. Geological Survey, Western Ecological Research Center, San Diego, CA 92101, USA.

H Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, CNRS - CP 30, Paris 75005, France.

I Papua New Guinea National Museum and Art Gallery, Port Moresby H5FQ+PX8, Papua New Guinea.

J Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 9420, USA.

K Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.

L Universitätssammlungen, Philipps-Universität Marburg, 35032 Marburg, Germany.

M School of Zoology & The Steinahrdt Museum of Natural History, Tel Aviv University, Tel-Aviv 6997801, Israel.

N Centre for Planetary Health and Food Security, Griffith University, Brisbane, Qld 4121, Australia.

O Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, Qld 4101, Australia.

P Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK.

Q Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.

R Sydney School of Veterinary Science, B01, University of Sydney, NSW 2006, Australia.

S IUCN Biodiversity Assessment and Knowledge Team, Cambridge CB2 3QZ, UK.

T School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia.

* Correspondence to: david.chapple@monash.edu

Handling Editor: Harriet Mills

Pacific Conservation Biology 29(6) 526-543 https://doi.org/10.1071/PC22034
Submitted: 13 September 2022  Accepted: 27 November 2022   Published: 6 January 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Context: Skinks comprise the dominant component of the terrestrial vertebrate fauna in Oceania, New Guinea, and Eastern Wallacea (ONGEW). However, knowledge of their diversity is incomplete, and their conservation needs are poorly understood.

Aims: To explore the diversity and threat status of the skinks of ONGEW and identify knowledge gaps and conservation needs.

Methods: We compiled a list of all skink species occurring in the region and their threat categories designated by the International Union for Conservation of Nature. We used available genetic sequences deposited in the National Center for Biotechnology Information’s GenBank to generate a phylogeny of the region’s skinks. We then assessed their diversity within geographical sub-divisions and compared to other reptile taxa in the region.

Key results: Approximately 300 species of skinks occur in ONGEW, making it the second largest global hotspot of skink diversity following Australia. Many phylogenetic relationships remain unresolved, and many species and genera are in need of taxonomic revision. One in five species are threatened with extinction, a higher proportion than almost all reptile families in the region.

Conclusions: ONGEW contain a large proportion of global skink diversity on <1% of the Earth’s landmass. Many are endemic and face risks such as habitat loss and invasive predators. Yet, little is known about them, and many species require taxonomic revision and threat level re-assessment.

Implications: The skinks of ONGEW are a diverse yet underexplored group of terrestrial vertebrates, with many species likely facing extreme risks in the near future. Further research is needed to understand the threats they face and how to protect them.

Keywords: islands, knowledge gaps, Melanesia, molecular phylogenetics, Oceania, regional threat assessment, Scincidae, Wallacea.


References

Alamgir, M, Sloan, S, Campbell, MJ, Engert, J, Kiele, R, Porolak, G, Mutton, T, Brenier, A, Ibisch, PL, and Laurance, WF (2019). Infrastructure expansion challenges sustainable development in Papua New Guinea. PLoS ONE 14, .
Infrastructure expansion challenges sustainable development in Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Ali, JR, and Heaney, LR (2021). Wallace’s line, Wallacea, and associated divides and areas: history of a tortuous tangle of ideas and labels. Biological Reviews 96, 922–942.
Wallace’s line, Wallacea, and associated divides and areas: history of a tortuous tangle of ideas and labels.Crossref | GoogleScholarGoogle Scholar |

Allison A, Hamilton A, Tallowin O (2022) Tachygyia microlepis (amended version of 2012 assessment). The IUCN Red List of Threatened Species 2022: e.T21286A217760413. Available at https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T21286A217760413.en

Altekar, G, Dwarkadas, S, Huelsenbeck, JP, and Ronquist, F (2004). Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20, 407–415.
Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference.Crossref | GoogleScholarGoogle Scholar |

Andrew, P, Cogger, H, Driscoll, D, Flakus, S, Harlow, P, Maple, D, Misso, M, Pink, C, Retallick, K, Rose, K, Tiernan, B, West, J, and Woinarski, JCZ (2018). Somewhat saved: a captive breeding programme for two endemic Christmas Island lizard species, now extinct in the wild. Oryx 52, 171–174.
Somewhat saved: a captive breeding programme for two endemic Christmas Island lizard species, now extinct in the wild.Crossref | GoogleScholarGoogle Scholar |

Austin, CC (1995). Molecular and morphological evolution in South Pacific scincid lizards: morphological conservatism and phylogenetic relationships of Papuan Lipinia (Scincidae). Herpetologica 51, 291–300.

Austin, CC (1999). Lizards took express train to Polynesia. Nature 397, 113–114.
Lizards took express train to Polynesia.Crossref | GoogleScholarGoogle Scholar |

Austin, CC, Rittmeyer, EN, Richards, SJ, and Zug, GR (2010). Phylogeny, historical biogeography and body size evolution in Pacific Island Crocodile skinks Tribolonotus (Squamata; Scincidae). Molecular Phylogenetics and Evolution 57, 227–236.
Phylogeny, historical biogeography and body size evolution in Pacific Island Crocodile skinks Tribolonotus (Squamata; Scincidae).Crossref | GoogleScholarGoogle Scholar |

Ayres, DL, Darling, A, Zwickl, DJ, Beerli, P, Holder, MT, Lewis, PO, Huelsenbeck, JP, Ronquist, F, Swofford, DL, Cummings, MP, Rambaut, A, and Suchard, MA (2012). BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Systematic Biology 61, 170–173.
BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Bauer AM, Sadlier RA (2000) ‘The herpetofauna of New Caledonia.’ (Society for the Study of Amphibians and Reptiles: Ithaca, New York)

Bauer, AM, Jackman, T, Smith, SA, Sadlier, RA, and Austin, CC (2004). Note: Vocalization in Nannoscincus gracilis (New Caledonian Gracile Dwarf Skink). Herpetological Review 35, 268–269.

Bavay, A (1869). Catalogue des Reptiles de la Nouvelle-Calédonie et description d’espèces nouvelles. Mémoires de la Société Linnéenne de Normandie 15, 1–37.

Bernstein, JM, Jackman, TR, Sadlier, RA, Wang, Y-Y, and Bauer, AM (2022). A novel dataset to identify the endemic herpetofauna of the New Caledonia biodiversity hotspot with DNA barcodes. Pacific Conservation Biology 28, 36–47.
A novel dataset to identify the endemic herpetofauna of the New Caledonia biodiversity hotspot with DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Blackburn, TM, Cassey, P, Duncan, RP, Evans, KL, and Gaston, KJ (2004). Avian extinction and mammalian introductions on Oceanic Islands. Science 305, 1955–1958.
Avian extinction and mammalian introductions on Oceanic Islands.Crossref | GoogleScholarGoogle Scholar |

Bland, LM, and Böhm, M (2016). Overcoming data deficiency in reptiles. Biological Conservation 204, 16–22.
Overcoming data deficiency in reptiles.Crossref | GoogleScholarGoogle Scholar |

Blom, MPK, Matzke, NJ, Bragg, JG, Arida, E, Austin, CC, Backlin, AR, Carretero, MA, Fisher, RN, Glaw, F, Hathaway, SA, Iskandar, DT, McGuire, JA, Karin, BR, Reilly, SB, Rittmeyer, EN, Rocha, S, Sanchez, M, Stubbs, AL, Vences, M, and Moritz, C (2019). Habitat preference modulares trans-oceanic dispersal in a terrestrial vertebrate. Proceedings of the Royal Society B: Biological Sciences 286, 20182575.
Habitat preference modulares trans-oceanic dispersal in a terrestrial vertebrate.Crossref | GoogleScholarGoogle Scholar |

Boulenger GA (1887) ‘Catalogue of the lizards in the British Museum (Natural History) III. Lacertidae, Gerrhosauridae, Scincidae, Anelytropsidae, Dibamidae, Chamaeleontidae.’ (British Museum (Natural History): London)

Boulenger, GA (1897). II. – Descriptions of new lizards and frogs from Mount Victoria, Owen Stanley Range, New Guinea, collected by Mr. A. S. Anthony. Annals and Magazine of Natural History 19, 6–13.
II. – Descriptions of new lizards and frogs from Mount Victoria, Owen Stanley Range, New Guinea, collected by Mr. A. S. Anthony.Crossref | GoogleScholarGoogle Scholar |

Boulenger, GA (1903). Descriptions of new reptiles from British New Guinea. Proceedings of the Zoological Society of London 1903, 125–129.

Boulenger, GA (1914). V. An annotated list of the batrachians and reptiles collected by the British Ornithologists’ Union Expedition and the Wollastolz Expedition in Dutch New Guinea. The Transactions of the Zoological Society of London 20, 247–274.
V. An annotated list of the batrachians and reptiles collected by the British Ornithologists’ Union Expedition and the Wollastolz Expedition in Dutch New Guinea.Crossref | GoogleScholarGoogle Scholar |

Brooks, TM, Mittermeier, RA, da Fonseca, GAB, Gerlach, J, Hoffmann, M, Lamoreux, JF, Mittermeier, CG, Pilgrim, JD, and Rodrigues, ASL (2006). Global biodiversity conservation priorities. Science 313, 58–61.
Global biodiversity conservation priorities.Crossref | GoogleScholarGoogle Scholar |

Brown, WC (1953). Results of the Archbold Expeditions. No. 69. A review of New Guinea lizards allied to Emoia baudini and Emoia physicae (Scincidae). American Museum Novitates 1627, 1–25.

Brown, WC (1954). Notes on several species of the genus Emoia, with descriptions of new species from the Solomon Islands. Fieldiana Zoology 34, 263–276.

Brown, WC (1983). A new species of Emoia Reptilia, Sauria, (Scincidae) from New Britain. Steenstrupia 8, 317–324.

Brown, WC (1991). Lizards of the genus Emoia (Scincidae) with observations on their evolution and biogeography. Memoirs of the California Academy of Sciences 15, 1–94.

Brown, WC, and Allison, A (1986). A new lizard of the genus Emoia (Scincidae) from Morobe province, Papua New Guinea. Occasional Papers Bernice P. Bishop Museum 26, 47–51.

Brown, WC, and Gibbons, JRH (1986). Species of the Emoia samoensis group of lizards (Scincidae) in the Fiji Islands, with descriptions of two new species. Proceedings of the California Academy of Sciences 44, 41–53.

Brown, WC, and Parker, F (1985). Three new lizards of the genus Emoia (Scincidae) from southern New Guinea. Breviora 480, 1–12.

Bruna, EM, Fisher, RN, and Case, TJ (1996). Morphological and genetic evolution appear decoupled in Pacific skinks (Squamata: Scincidae: Emoia). Proceedings of the Royal Society of London, Series B - Biological Sciences 263, 681–688.

Bryan JE, Shearman PL (2015) ‘The state of the forests of Papua New Guinea 2014: measuring change over the period 2002–2014.’ (University of Papua New Guinea: Port Moresby)

Caetano, GHdO, Chapple, DG, Grenyer, R, Raz, T, Rosenblatt, J, Tingley, R, Böhm, M, Meiri, S, and Roll, U (2022). Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny. PLoS Biology 20, .
Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny.Crossref | GoogleScholarGoogle Scholar |

Cámara-Leret, R, Frodin, DG, Adema, F, Anderson, C, Appelhans, MS, Argent, G, Guerrero, SA, Ashton, P, Baker, WJ, Barfod, AS, Barrington, D, Borosova, R, Bramley, GLC, Briggs, M, Buerki, S, Cahen, D, Callmander, MW, Cheek, M, Chen, C-W, Conn, BJ, Coode, MJE, Darbyshire, I, Dawson, S, Dransfield, J, Drinkell, C, Duyfjes, B, Ebihara, A, Ezedin, Z, Fu, L-F, Gideon, O, Girmansyah, D, Govaerts, R, Fortune-Hopkins, H, Hassemer, G, Hay, A, Heatubun, CD, Hind, DJN, Hoch, P, Homot, P, Hovenkamp, P, Hughes, M, Jebb, M, Jennings, L, Jimbo, T, Kessler, M, Kiew, R, Knapp, S, Lamei, P, Lehnert, M, Lewis, GP, Linder, HP, Lindsay, S, Low, YW, Lucas, E, Mancera, JP, Monro, AK, Moore, A, Middleton, DJ, Nagamasu, H, Newman, MF, Lughadha, EN, Melo, PHA, Ohlsen, DJ, Pannell, CM, Parris, B, Pearce, L, Penneys, DS, Perrie, LR, Petoe, P, Poulsen, AD, Prance, GT, Quakenbush, JP, Raes, N, Rodda, M, Rogers, ZS, Schuiteman, A, Schwartsburd, P, Scotland, RW, Simmons, MP, Simpson, DA, Stevens, P, Sundue, M, Testo, W, Trias-Blasi, A, Turner, I, Utteridge, T, Walsingham, L, Webber, BL, Wei, R, Weiblen, GD, Weigend, M, Weston, P, de Wilde, W, Wilkie, P, Wilmot-Dear, CM, Wilson, HP, Wood, JRI, Zhang, L-B, and van Welzen, PC (2020). New Guinea has the world’s richest island flora. Nature 584, 579–583.
New Guinea has the world’s richest island flora.Crossref | GoogleScholarGoogle Scholar |

Chamberlain, SA, and Szöcs, E (2013). taxize: taxonomic search and retrieval in R. F1000Research 2, .
taxize: taxonomic search and retrieval in R.Crossref | GoogleScholarGoogle Scholar |

Chamberlain S, Szöcs E, Foster Z, Arendsee Z, Boettiger C, Ram K, Bartomeus I, Baumgartner J, O’Donnell J, Oksanen J, Tzovaras BG, Marchand P, Tran V, Salmon M, Li G, Grenié M (2020) taxize: taxonomic information from around the web. Available at https://github.com/ropensci/taxize

Chapple, DG, Roll, U, Böhm, M, Aguilar, R, Amey, AP, Austin, CC, Baling, M, Barley, AJ, Bates, MF, Bauer, AM, Blackburn, DG, Bowles, P, Brown, RM, Chandramouli, SR, Chirio, L, Cogger, H, Colli, GR, Conradie, W, Couper, PJ, Cowan, MA, Craig, MD, Das, I, Datta-Roy, A, Dickman, CR, Ellis, RJ, Fenner, AL, Ford, S, Ganesh, SR, Gardner, MG, Geissler, P, Gillespie, GR, Glaw, F, Greenlees, MJ, Griffith, OW, Grismer, LL, Haines, ML, Harris, DJ, Hedges, SB, Hitchmough, RA, Hoskin, CJ, Hutchinson, MN, Ineich, I, Janssen, J, Johnston, GR, Karin, BR, Keogh, JS, Kraus, F, LeBreton, M, Lymberakis, P, Masroor, R, McDonald, PJ, Mecke, S, Melville, J, Melzer, S, Michael, DR, Miralles, A, Mitchell, NJ, Nelson, NJ, Nguyen, TQ, de Campos Nogueira, C, Ota, H, Pafilis, P, Pauwels, OSG, Perera, A, Pincheira-Donoso, D, Reed, RN, Ribeiro-Júnior, MA, Riley, JL, Rocha, S, Rutherford, PL, Sadlier, RA, Shacham, B, Shea, GM, Shine, R, Slavenko, A, Stow, A, Sumner, J, Tallowin, OJS, Teale, R, Torres-Carvajal, O, Trape, J-F, Uetz, P, Ukuwela, KDB, Valentine, L, Van Dyke, JU, van Winkel, D, Vasconcelos, R, Vences, M, Wagner, P, Wapstra, E, While, GM, Whiting, MJ, Whittington, CM, Wilson, S, Ziegler, T, Tingley, R, and Meiri, S (2021). Conservation status of the world’s skinks (Scincidae): taxonomic and geographic patterns in extinction risk. Biological Conservation 257, .
Conservation status of the world’s skinks (Scincidae): taxonomic and geographic patterns in extinction risk.Crossref | GoogleScholarGoogle Scholar |

Clause, AG, Thomas-Moko, N, Rasalato, S, and Fisher, RN (2018). All is not lost: herpetological “Extinctions” in the Fiji Islands. Pacific Science 72, 321–328.
All is not lost: herpetological “Extinctions” in the Fiji Islands.Crossref | GoogleScholarGoogle Scholar |

Cogger, HG (1972). A new scincid lizard of the genus Tribolonotus from Manus Island, New Guinea. Zoologische Mededelingen 47, 202–210.

Cox, N, Young, BE, Bowles, P, Fernandez, M, Marin, J, Rapacciuolo, G, Böhm, M, Brooks, TM, Hedges, SB, Hilton-Taylor, C, Hoffmann, M, Jenkins, RKB, Tognelli, MF, Alexander, GJ, Allison, A, Ananjeva, NB, Auliya, M, Avila, LJ, Chapple, DG, Cisneros-Heredia, DF, Cogger, HG, Colli, GR, De Silva, A, Eisemberg, CC, Els, J, Fong, GA, Grant, TD, Hitchmough, RA, Iskandar, DT, Kidera, N, Martins, M, Meiri, S, Mitchell, NJ, Molur, S, Nogueira, CdeC, Ortiz, JC, Penner, J, Rhodin, AGJ, Rivas, GA, Rödel, M-O, Roll, U, Sanders, KL, Santos-Barrera, G, Shea, GM, Spawls, S, Stuart, BL, Tolley, KA, Trape, J-F, Vidal, MA, Wagner, P, Wallace, BP, and Xie, Y (2022). A global reptile assessment highlights shared conservation needs of tetrapods. Nature 605, 285–290.
A global reptile assessment highlights shared conservation needs of tetrapods.Crossref | GoogleScholarGoogle Scholar |

Darriba, D, Posada, D, Kozlov, AM, Stamatakis, A, Morel, B, and Flouri, T (2020). ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution 37, 291–294.
ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models.Crossref | GoogleScholarGoogle Scholar |

Duffy, DC (2011). No room in the Ark? Climate change and biodiversity in the Pacific islands of Oceania. Pacific Conservation Biology 17, 192–200.
No room in the Ark? Climate change and biodiversity in the Pacific islands of Oceania.Crossref | GoogleScholarGoogle Scholar |

Duméril AMC, Bibron G (1839) ‘Erpétologie générale ou histoire naturelle complète des reptiles. Tome Cinquième.’ (Roret: Paris)

Duncan, RP, Boyer, AG, and Blackburn, TM (2013). Magnitude and variation of prehistoric bird extinctions in the Pacific. Proceedings of the National Academy of Sciences 110, 6436–6441.
Magnitude and variation of prehistoric bird extinctions in the Pacific.Crossref | GoogleScholarGoogle Scholar |

Edler, D, Klein, J, Antonelli, A, and Silvestro, D (2021). raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution 12, 373–377.
raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML.Crossref | GoogleScholarGoogle Scholar |

Ferrier, S (2002). Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Systematic Biology 51, 331–363.
Mapping spatial pattern in biodiversity for regional conservation planning: where to from here?Crossref | GoogleScholarGoogle Scholar |

Fisher, R, and Ineich, I (2012). Cryptic extinction of a common Pacific lizard Emoia impar (Squamata, Scincidae) from the Hawaiian Islands. Oryx 46, 187–195.
Cryptic extinction of a common Pacific lizard Emoia impar (Squamata, Scincidae) from the Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar |

Fromm, A, and Meiri, S (2021). Big, flightless, insular and dead: characterising the extinct birds of the Quaternary. Journal of Biogeography 48, 2350–2359.
Big, flightless, insular and dead: characterising the extinct birds of the Quaternary.Crossref | GoogleScholarGoogle Scholar |

Greer, AE (1973). Two new lygosomine skinks from New Guinea with comments on the loss of the external ear in lygosomines and observations on previously described species. Breviora 406, 1–25.

Greer, AE (1974). The genetic relationships of the Scincid lizard genus Leiolopisma and its relatives. Australian Journal of Zoology Supplementary Series 22, 1–67.
The genetic relationships of the Scincid lizard genus Leiolopisma and its relatives.Crossref | GoogleScholarGoogle Scholar |

Greer, AE, and Parker, F (1967a). A new scincid lizard from the northern Solomon Islands. Breviora 275, 1–20.

Greer, AE, and Parker, F (1967b). A second skink with fragmented head scales from Bougainville, Solomon Islands. Breviora 279, 1–12.

Greer, AE, and Parker, F (1968). A new species of Tribolonotus (Lacertilia: Scincidae) from Bougainville and Buka, Solomon Islands, with comments on the biology of the genus. Breviora 291, 1–23.

Greer, AE, and Parker, F (1971). A new scincid lizard from Bougainville, Solomon Islands. Breviora 364, 1–11.

Greer, AE, and Parker, F (1974). The fasciatus species group of Sphenomorphus (Lacertilia: Scincidae): notes on eight previously described species and descriptions of three new species. Papua New Guinea Scientific Society Proceedings 25, 31–61.

Greer, AE, and Raizes, G (1969). Green blood pigment in lizards. Science 166, 392–393.
Green blood pigment in lizards.Crossref | GoogleScholarGoogle Scholar |

Greer, AE, and Shea, G (2004). A new character within the taxonomically difficult Sphenomorphus group of lygosomine skinks, with a description of a new species from New Guinea. Journal of Herpetology 38, 79–87.
A new character within the taxonomically difficult Sphenomorphus group of lygosomine skinks, with a description of a new species from New Guinea.Crossref | GoogleScholarGoogle Scholar |

Greer, AE, and Simon, M (1982). Fojia bumui, an unusual new genus and species of scincid lizard from New Guinea. Journal of Herpetology 16, 131–139.
Fojia bumui, an unusual new genus and species of scincid lizard from New Guinea.Crossref | GoogleScholarGoogle Scholar |

Greer, AE, Allison, A, and Cogger, HG (2005). Four new species of Lobulia (Lacertilia: Scincidae) from high altitude in New Guinea. Herpetological Monographs 19, 153–179.
Four new species of Lobulia (Lacertilia: Scincidae) from high altitude in New Guinea.Crossref | GoogleScholarGoogle Scholar |

Gumbs, R, Gray, CL, Böhm, M, Hoffmann, M, Grenyer, R, Jetz, W, Meiri, S, Roll, U, Owen, NR, and Rosindell, J (2020). Global priorities for conservation of reptilian phylogenetic diversity in the face of human impacts. Nature Communications 11, .
Global priorities for conservation of reptilian phylogenetic diversity in the face of human impacts.Crossref | GoogleScholarGoogle Scholar |

Günther, R (2000). In alten Sammlungen aus Neuguinea entdeckt: Zwei neue Arten der Gattung Lipinia (Squamata: Scincidae). Salamandra 36, 157–174.

Hamilton, AM, Zug, GR, and Austin, CC (2010). Biogeographic anomaly or human introduction: a cryptogenic population of tree skink (Reptilia: Squamata) from the Cook Islands, Oceania. Biological Journal of the Linnean Society 100, 318–328.
Biogeographic anomaly or human introduction: a cryptogenic population of tree skink (Reptilia: Squamata) from the Cook Islands, Oceania.Crossref | GoogleScholarGoogle Scholar |

Hartdegen, RW, Russell, MJ, Young, B, and Reams, RD (2001). Vocalization of the crocodile skink, Tribolonotus gracilis (De Rooy, 1909), and evidence of parental care. Contemporary Herpetology 2001, 1–6.
Vocalization of the crocodile skink, Tribolonotus gracilis (De Rooy, 1909), and evidence of parental care.Crossref | GoogleScholarGoogle Scholar |

Heads, M (2002). Regional patterns of biodiversity in New Guinea animals. Journal of Biogeography 29, 285–294.
Regional patterns of biodiversity in New Guinea animals.Crossref | GoogleScholarGoogle Scholar |

Hoang, DT, Chernomor, O, von Haeseler, A, Minh, BQ, and Vinh, LS (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar |

Ineich, I, and Zug, GR (1996). Tachygyia, the giant Tongan skink: extinct or extant? Cryptozoology 12, 30–35.

Irschick, DJ, Austin, CC, Petren, K, Fisher, RN, Losos, JB, and Ellers, O (1996). A comparative analysis of clinging ability among pad-bearing lizards. Biological Journal of the Linnean Society 59, 21–35.
A comparative analysis of clinging ability among pad-bearing lizards.Crossref | GoogleScholarGoogle Scholar |

IUCN (2016) ‘A global standard for the identification of key biodiversity areas, Version 1.0.’ 1st edn. (IUCN: Gland)

IUCN (2021) IUCN red list of threatened species. Version 2021-3. Available at https://www.iucnredlist.org

Iverson JB (1982) Adaptations to herbivory in iguanine lizards. In ‘Iguanas of the world: their behavior, ecology, and conservation’. (Eds GM Burghardt, AS Rand) pp. 60–76. (Noyes Publications: Park Ridge, NJ)

Janssen, J, and Shepherd, CR (2018). Challenges in documenting trade in non CITES-listed species: a case study on crocodile skinks (Tribolonotus spp.). Journal of Asia-Pacific Biodiversity 11, 476–481.
Challenges in documenting trade in non CITES-listed species: a case study on crocodile skinks (Tribolonotus spp.).Crossref | GoogleScholarGoogle Scholar |

Jourdan, H, Sadlier, RA, and Bauer, AM (2001). Little fire ant invasion (Wasmannia auropunctata) as a threat to New Caledonian lizards: evidences from a sclerophyll forest (Hymenoptera: Formicidae). Sociobiology 38, 283–302.

Jowers, MJ, Simone, Y, Herrel, A, Cabezas, MP, Xavier, R, Holden, M, Boistel, R, Murphy, JC, Santin, M, Caut, S, Auguste, RJ, van der Meijden, A, Andreone, F, and Ineich, I (2022). The Terrific Skink bite force suggests insularity as a likely driver to exceptional resource use. Scientific Reports 12, .
The Terrific Skink bite force suggests insularity as a likely driver to exceptional resource use.Crossref | GoogleScholarGoogle Scholar |

Jupiter, SD, Wenger, A, Klein, CJ, Albert, S, Mangubhai, S, Nelson, J, Teneva, L, Tulloch, VJ, White, AT, and Watson, JEM (2017). Opportunities and constraints for implementing integrated land-sea management on islands. Environmental Conservation 44, 254–266.
Opportunities and constraints for implementing integrated land-sea management on islands.Crossref | GoogleScholarGoogle Scholar |

Kabutaulaka TT (2000) Rumble in the jungle: land, culture and (un)sustainable logging in Solomon Islands. In ‘Culture and sustainable development in the Pacific’. (Ed. A Hooper) pp. 88–97. (Australian National University Press: Canberra)

Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A, and Jermiin, LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar |

Karin, BR, Stubbs, AL, Arifin, U, Bloch, LM, Ramadhan, G, Iskandar, DT, Arida, E, Reilly, SB, Kusnadi, A, and McGuire, JA (2018). The herpetofauna of the Kei Islands (Maluku, Indonesia): comprehensive report on new and historical collections, biogeographic patterns, conservation concerns, and an annotated checklist of species from Kei Kecil, Kei Besar, Tam, and Kur. Raffles Bulletin of Zoology 66, 704–738.

Katovai, E, Edwards, W, and Laurance, WF (2015). Dynamics of logging in Solomon Islands: the need for restoration and conservation alternatives. Tropical Conservation Science 8, 718–731.
Dynamics of logging in Solomon Islands: the need for restoration and conservation alternatives.Crossref | GoogleScholarGoogle Scholar |

Keppel, G, Morrison, C, Watling, D, Tuiwawa, MV, and Rounds, IA (2012). Conservation in tropical Pacific Island countries: why most current approaches are failing. Conservation Letters 5, 256–265.
Conservation in tropical Pacific Island countries: why most current approaches are failing.Crossref | GoogleScholarGoogle Scholar |

Keppel, G, Naikatini, A, Rounds, IA, Pressey, RL, and Thomas, NT (2015). Local and expert knowledge improve conservation assessment of rare and iconic Fijian tree species. Pacific Conservation Biology 21, 214–219.
Local and expert knowledge improve conservation assessment of rare and iconic Fijian tree species.Crossref | GoogleScholarGoogle Scholar |

Kingsford, RT, and Watson, JEM (2011). Climate change in Oceania – a synthesis of biodiversity impacts and adaptations. Pacific Conservation Biology 17, 270–284.
Climate change in Oceania – a synthesis of biodiversity impacts and adaptations.Crossref | GoogleScholarGoogle Scholar |

Klein, ER, Harris, RB, Fisher, RN, and Reeder, TW (2016). Biogeographical history and coalescent species delimitation of Pacific island skinks (Squamata: Scincidae: Emoia cyanura species group). Journal of Biogeography 43, 1917–1929.
Biogeographical history and coalescent species delimitation of Pacific island skinks (Squamata: Scincidae: Emoia cyanura species group).Crossref | GoogleScholarGoogle Scholar |

Knight, AT, Smith, RJ, Cowling, RM, Desmet, PG, Faith, DP, Ferrier, S, Gelderblom, CM, Grantham, H, Lombard, AT, Maze, K, Nel, JL, Parrish, JD, Pence, GQK, Possingham, HP, Reyers, B, Rouget, M, Roux, D, and Wilson, KA (2007). Improving the key biodiversity areas approach for effective conservation planning. BioScience 57, 256–261.
Improving the key biodiversity areas approach for effective conservation planning.Crossref | GoogleScholarGoogle Scholar |

Kraus, F (2018). A new species of Emoia (Squamata: Scincidae) from Papua New Guinea. Journal of Herpetology 52, 430–436.
A new species of Emoia (Squamata: Scincidae) from Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Kraus, F (2020). A new species of Lobulia (Squamata: Scincidae) from Papua New Guinea. Zootaxa 4779, 201–214.
A new species of Lobulia (Squamata: Scincidae) from Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Kraus, F (2021). A herpetofauna with dramatic endemism signals an overlooked biodiversity hotspot. Biodiversity and Conservation 30, 3167–3183.
A herpetofauna with dramatic endemism signals an overlooked biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Kuch, U, and McGuire, JA (2004). Range extensions of Lycodon capucinus BOIE 1827 in eastern Indonesia. Herpetozoa 17, 191–193.

Lanfear, R, Calcott, B, Kainer, D, Mayer, C, and Stamatakis, A (2014). Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology 14, .
Selecting optimal partitioning schemes for phylogenomic datasets.Crossref | GoogleScholarGoogle Scholar |

Laurance, WF, Kakul, T, Keenan, RJ, Sayer, J, Passingan, S, Clements, GR, Villegas, F, and Sodhi, NS (2011). Predatory corporations, failing governance, and the fate of forests in Papua New Guinea. Conservation Letters 4, 95–100.
Predatory corporations, failing governance, and the fate of forests in Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Lavery, TH, DeCicco, LH, Richmond, JQ, Tigulu, IG, Andersen, MJ, Boseto, D, and Moyle, RG (2021). New faunal records from a world heritage site in danger: Rennell Island, Solomon Islands. Pacific Science 75, 407–420.
New faunal records from a world heritage site in danger: Rennell Island, Solomon Islands.Crossref | GoogleScholarGoogle Scholar |

Leary, T (1991). A review of terrestrial wildlife trade originating from Solomon Islands. Australian Zoologist 27, 20–27.
A review of terrestrial wildlife trade originating from Solomon Islands.Crossref | GoogleScholarGoogle Scholar |

Lescure, J (2002). La naissance de l’herpétologie. Bulletin de la Société Herpétologique de France 101, 5–27.

Lesson R (1830) Description de quelques reptiles nouveaux ou peu connus. In ‘Voyage Autour du Monde, Exécuté par Ordre du Roi, Sur la Corvette de Sa Majesté, La Coquille, pendant les années 1822, 1823, 1824 et 1825. Zoologie Tome 2, Partie 1’. (Ed. LI Duperrey) pp. 34–65. (Arthus Bertrand: Paris)

L’Huillier L, Jaffré T (2010) L’exploitation des minerais de nickel en Nouvelle-Calédonie. In ‘Mines et Environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration’. (Eds L L’Huillier, T Jaffré, A Wulff) pp. 21–31. (IAC editions: New Caledonia)

Linkem, CW, Brown, RM, Siler, CD, Evans, BJ, Austin, CC, Iskandar, DT, Diesmos, AC, Supriatna, J, Andayani, N, and McGuire, JA (2013). Stochastic faunal exchanges drive diversification in widespread Wallacean and Pacific island lizards (Squamata: Scincidae: Lamprolepis smaragdina). Journal of Biogeography 40, 507–520.
Stochastic faunal exchanges drive diversification in widespread Wallacean and Pacific island lizards (Squamata: Scincidae: Lamprolepis smaragdina).Crossref | GoogleScholarGoogle Scholar |

Loh, J, and Harmon, D (2005). A global index of biocultural diversity. Ecological Indicators 5, 231–241.
A global index of biocultural diversity.Crossref | GoogleScholarGoogle Scholar |

Loveridge, A (1945). New scincid lizards of the genera Tropidophorus and Lygosoma from New Guinea. Proceedings of the Biological Society of Washington 58, 47–52.

Mace, GM (2004). The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society B: Biological Sciences 359, 711–719.
The role of taxonomy in species conservation.Crossref | GoogleScholarGoogle Scholar |

Macleay, W (1877). The lizards of the Chevert Expedition. Proceedings of the Linnean Society of New South Wales 2, 97–104.

Mayr, E (1944). Wallace’s Line in the light of recent zoogeographic studies. The Quarterly Review of Biology 19, 1–14.
Wallace’s Line in the light of recent zoogeographic studies.Crossref | GoogleScholarGoogle Scholar |

McDonald, PJ, Brown, RM, Kraus, F, Bowles, P, Arifin, U, Eliades, SJ, Fisher, RN, Gaulke, M, Grismer, LL, Ineich, I, Karin, BR, Meneses, CG, Richards, SJ, Sanguila, MB, Siler, CD, and Oliver, PM (2022). Cryptic extinction risk in a western Pacific lizard radiation. Biodiversity and Conservation 31, 2045–2062.
Cryptic extinction risk in a western Pacific lizard radiation.Crossref | GoogleScholarGoogle Scholar |

McMillen, HL, Ticktin, T, Friedlander, A, Jupiter, SD, Thaman, R, Campbell, J, Veitayaki, J, Giambelluca, T, Nihmei, S, Rupeni, E, Apis-Overhoff, L, Aalbersberg, W, and Orcherton, DF (2014). Small islands, valuable insights: systems of customary resource use and resilience to climate change in the Pacific. Ecology and Society 19, .
Small islands, valuable insights: systems of customary resource use and resilience to climate change in the Pacific.Crossref | GoogleScholarGoogle Scholar |

Meiri, S (2016). Small, rare and trendy: traits and biogeography of lizards described in the 21st century. Journal of Zoology 299, 251–261.
Small, rare and trendy: traits and biogeography of lizards described in the 21st century.Crossref | GoogleScholarGoogle Scholar |

Meiri, S, Bauer, AM, Allison, A, Castro-Herrera, F, Chirio, L, Colli, G, Das, I, Doan, TM, Glaw, F, Grismer, LL, Hoogmoed, M, Kraus, F, LeBreton, M, Meirte, D, Nagy, ZT, Nogueira, CdeC, Oliver, P, Pauwels, OSG, Pincheira-Donoso, D, Shea, G, Sindaco, R, Tallowin, OJS, Torres-Carvajal, O, Trape, J-F, Uetz, P, Wagner, P, Wang, Y, Ziegler, T, and Roll, U (2018). Extinct, obscure or imaginary: the lizard species with the smallest ranges. Diversity and Distributions 24, 262–273.
Extinct, obscure or imaginary: the lizard species with the smallest ranges.Crossref | GoogleScholarGoogle Scholar |

Mertens, R (1928). Neue Inselrassen von Cryptoblepharus boutonii (Desjardin). Zoologischer Anzeiger 78, 82–89.

Mertens, R (1931). Ablepharus boutonii (Desjardin) und seine geographische Variation. Zoologische Jahrbücher. Abteilung für Systematik, Geographie und Biologie der Tiere 61, 63–210.

Mertens, R (1933). Weitere Mitteilungen über die Rassen von Ablepharus boutonii (Desjardin). I. Zoologischer Anzeiger 105, 92–96.

Mertens, R (1934). Weitere Mitteilungen über die Rassen von Ablepharus boutonii (Desjardin). II. Zoologischer Anzeiger 108, 40–43.

Mertens, R (1964). Weitere Mitteilungen über die Rassen von Ablepharus boutonii (Desjardin). III. Zoologischer Anzeiger 173, 99–110.

Meyer, AB (1874). Eine Mittheilung von Hrn. Dr. Adolf Bernhard Meyer über die von ihm auf Neu-Guinea und den Inseln Jobi, Mysore und Mafoor im Jahre 1873 gesammelten Amphibien. Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin 1874, 128–140.

Michaelides, S, Cole, N, and Funk, SM (2015). Translocation retains genetic diversity of a threatened endemic reptile in Mauritius. Conservation Genetics 16, 661–672.
Translocation retains genetic diversity of a threatened endemic reptile in Mauritius.Crossref | GoogleScholarGoogle Scholar |

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the gateway computing environments workshop (GCE), 14 November’. pp. 1–8. (Institute of Electrical and Electronics Engineers [IEEE]: New Orleans, USA)

Minh, BQ, Schmidt, HA, Chernomor, O, Schrempf, D, Woodhams, MD, von Haeseler, A, and Lanfear, R (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530–1534.
IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era.Crossref | GoogleScholarGoogle Scholar |

Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GAB (2004) ‘Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions.’ (Cemex-Agrupación Sierra Madre: Mexico City)

Morley, CG, and Winder, L (2015). Vulnerability of skinks to predation by introduced mongoose in the Fiji Islands. Pacific Science 69, 313–317.
Vulnerability of skinks to predation by introduced mongoose in the Fiji Islands.Crossref | GoogleScholarGoogle Scholar |

Morrison, C, Pikacha, P, Pitakia, T, and Boseto, D (2007). Herpetofauna, community education and logging on Choiseul Island, Solomon Islands: implications for conservation. Pacific Conservation Biology 13, 250–258.
Herpetofauna, community education and logging on Choiseul Island, Solomon Islands: implications for conservation.Crossref | GoogleScholarGoogle Scholar |

Morrison C, Keppel G, Moko N, Pikacha P, Brodie G (2022) Conservation in the Pacific. In ‘The Pacific Islands: environment and society’. (Ed. M Rapaport). (University of Hawaii Press: Honolulu, HI).

Myers, N, Mittermeier, RA, Mittermeier, CG, da Fonseca, GAB, and Kent, J (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar |

Oliver, PM, Blom, MPK, Cogger, HG, Fisher, RN, Richmond, JQ, and Woinarski, JCZ (2018). Insular biogeographic origins and high phylogenetic distinctiveness for a recently depleted lizard fauna from Christmas Island, Australia. Biology Letters 14, .
Insular biogeographic origins and high phylogenetic distinctiveness for a recently depleted lizard fauna from Christmas Island, Australia.Crossref | GoogleScholarGoogle Scholar |

O’Shea, M, Kusuma, KI, and Kaiser, H (2018). First record of the Island Wolfsnake, Lycodon capucinus, from New Guinea, with comments on its widespread distribution and confused taxonomy, and a new record for the common sun skink, Eutropis multifasciata. IRCF Reptiles & Amphibians 25, 70–84.

Parker, HW (1936). V. – A Collection of reptiles and amphibians from the mountains of British New Guinea. Annals and Magazine of Natural History 17, 66–93.
V. – A Collection of reptiles and amphibians from the mountains of British New Guinea.Crossref | GoogleScholarGoogle Scholar |

Pascal, M, de Forges, BR, Le Guyader, H, and Simberloff, D (2008). Mining and other threats to the New Caledonia biodiversity hotspot. Conservation Biology 22, 498–499.
Mining and other threats to the New Caledonia biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Pereira, HM, Navarro, LM, and Martins, IS (2012). Global biodiversity change: the bad, the good, and the unknown. Annual Review of Environment and Resources 37, 25–50.
Global biodiversity change: the bad, the good, and the unknown.Crossref | GoogleScholarGoogle Scholar |

Peters, WCH, and Doria, G (1878). Catalogo dei retilli e dei batraci raccolti da O. Beccari, L. M. D’Alberts e A. A. Bruijn. nella sotto-regione Austro-Malese. Annali del Museo Civico de Storia Naturale di Genova 13, 323–450.

Pimm, SL, Jenkins, CN, Abell, R, Brooks, TM, Gittleman, JL, Joppa, LN, Raven, PH, Roberts, CM, and Sexton, JO (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, .
The biodiversity of species and their rates of extinction, distribution, and protection.Crossref | GoogleScholarGoogle Scholar |

Pollard, E, Brodie, G, Thaman, R, and Morrison, C (2014). The use of herpetofauna and cultural values to identify priority conservation forests on Malaita, Solomon Islands. Pacific Conservation Biology 20, 354–352.
The use of herpetofauna and cultural values to identify priority conservation forests on Malaita, Solomon Islands.Crossref | GoogleScholarGoogle Scholar |

Powney, GD, Grenyer, R, Orme, CDL, Owens, IPF, and Meiri, S (2010). Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecology and Biogeography 19, 386–396.
Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds.Crossref | GoogleScholarGoogle Scholar |

Primack RB (2014) ‘Essentials of conservation biology.’ 6th edn. (Sinauer Associates: Sunderland, MA)

Pyron, RA, Burbrink, FT, and Wiens, JJ (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology 13, .
A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes.Crossref | GoogleScholarGoogle Scholar |

Rabosky, DL, Donnellan, SC, Talaba, AL, and Lovette, IJ (2007). Exceptional among-lineage variation in diversification rates during the radiation of Australia’s most diverse vertebrate clade. Proceedings of the Royal Society of London B: Biological Sciences 274, 2915–2923.
Exceptional among-lineage variation in diversification rates during the radiation of Australia’s most diverse vertebrate clade.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/

Reilly, SB, Karin, BR, Stubbs, AL, Arida, E, Arifin, U, Kaiser, H, Bi, K, Hamidy, A, Iskandar, DT, and McGuire, JA (2022). Diverge and Conquer: phylogenomics of southern Wallacean forest skinks (Genus: Sphenomorphus) and their colonization of the Lesser Sunda Archipelago. Evolution; International Journal of Organic Evolution 76, 2281–2301.
Diverge and Conquer: phylogenomics of southern Wallacean forest skinks (Genus: Sphenomorphus) and their colonization of the Lesser Sunda Archipelago.Crossref | GoogleScholarGoogle Scholar |

Richmond, JQ, Ota, H, Grismer, LL, and Fisher, RN (2021). Influence of niche breadth and position on the historical biogeography of seafaring scincid lizards. Biological Journal of the Linnean Society 132, 74–92.
Influence of niche breadth and position on the historical biogeography of seafaring scincid lizards.Crossref | GoogleScholarGoogle Scholar |

Richmond, JQ, Wostl, E, Reed, RN, and Fisher, RN (2022). Range eclipse leads to tenuous survival of a rare lizard species on a barrier atoll. Oryx 56, 63–72.
Range eclipse leads to tenuous survival of a rare lizard species on a barrier atoll.Crossref | GoogleScholarGoogle Scholar |

Rittmeyer, EN, and Austin, CC (2017). Two new species of Crocodile Skinks (Squamata: Scincidae: Tribolonotus) from the Solomon Archipelago. Zootaxa 4268, 71–87.
Two new species of Crocodile Skinks (Squamata: Scincidae: Tribolonotus) from the Solomon Archipelago.Crossref | GoogleScholarGoogle Scholar |

Rodda, GH, and Fritts, TH (1992). The impact of the introduction of the colubrid snake Boiga irregularis on Guam’s lizards. Journal of Herpetology 26, 166–174.
The impact of the introduction of the colubrid snake Boiga irregularis on Guam’s lizards.Crossref | GoogleScholarGoogle Scholar |

Rodriguez, ZB, Perkins, SL, and Austin, CC (2018). Multiple origins of green blood in New Guinea lizards. Science Advances 4, .
Multiple origins of green blood in New Guinea lizards.Crossref | GoogleScholarGoogle Scholar |

Roll, U, Feldman, A, Novosolov, M, Allison, A, Bauer, AM, Bernard, R, Böhm, M, Castro-Herrera, F, Chirio, L, Collen, B, Colli, GR, Dabool, L, Das, I, Doan, TM, Grismer, LL, Hoogmoed, M, Itescu, Y, Kraus, F, LeBreton, M, Lewin, A, Martins, M, Maza, E, Meirte, D, Nagy, ZT, Nogueira, CdeC, Pauwels, OSG, Pincheira-Donoso, D, Powney, GD, Sindaco, R, Tallowin, OJS, Torres-Carvajal, O, Trape, J-F, Vidan, E, Uetz, P, Wagner, P, Wang, Y, Orme, CDL, Grenyer, R, and Meiri, S (2017). The global distribution of tetrapods reveals a need for targeted reptile conservation. Nature Ecology & Evolution 1, 1677–1682.
The global distribution of tetrapods reveals a need for targeted reptile conservation.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F, Teslenko, M, Van Der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA, and Huelsenbeck, JP (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Sadlier, RA (1987). A review of the scincid lizards of New Caledonia. Records of the Australian Museum 39, 1–66.
A review of the scincid lizards of New Caledonia.Crossref | GoogleScholarGoogle Scholar |

Sadlier, RA, Bauer, AM, and Colgan, DJ (1999). The scincid lizard genus Caledoniscincus (Reptilia: Scincidae) from New Caledonia in the Southwest Pacific: a review of Caledoniscincus austrocaledonicus (Bavay) and description of six new species from Province Nord. Records of the Australian Museum 51, 57–82.
The scincid lizard genus Caledoniscincus (Reptilia: Scincidae) from New Caledonia in the Southwest Pacific: a review of Caledoniscincus austrocaledonicus (Bavay) and description of six new species from Province Nord.Crossref | GoogleScholarGoogle Scholar |

Sadlier, RA, Bauer, AM, and Smith, SA (2006). A new species of Nannoscincus Günther (Squamata: Scincidae) from high elevation forest in southern New Caledonia. Records of the Australian Museum 58, 29–36.
A new species of Nannoscincus Günther (Squamata: Scincidae) from high elevation forest in southern New Caledonia.Crossref | GoogleScholarGoogle Scholar |

Sadlier RA, Smith SA, Bauer AM, Whitaker AH (2009a) Three new species of skink in the genus Marmorosphax Sadlier (Squamata: Scincidae) from New Caledonia. In ‘Zoologia Neocaledonica 7. Biodiversity studies in New Caledonia’. (Ed. P Grandcolas) pp. 373–390. (Muséum National d’Histoire Naturelle: Paris)

Sadlier, RA, Smith, SA, Whitaker, A, and Bauer, AM (2009b). A new live-bearing species of scincid lizard (Reptilia: Scincidae) from New Caledonia, southwest Pacific. Pacific Science 63, 123–136.
A new live-bearing species of scincid lizard (Reptilia: Scincidae) from New Caledonia, southwest Pacific.Crossref | GoogleScholarGoogle Scholar |

Sadlier, RA, Bauer, AM, Smith, SA, Shea, GM, and Whitaker, AH (2014a). High elevation endemism on New Caledonia’s ultramafic peaks – a new genus and two new species of scincid lizard. Mémoires du Muséum National d’Histoire Naturelle 206, 115–125.

Sadlier, RA, Bauer, AM, Wood, PL, Smith, SA, Whitaker, AH, and Jackman, TR (2014b). Cryptic speciation in the New Caledonian lizard genus Nannoscincus (Reptilia: Scincidae) including the description of a new species and recognition of Nannoscincus fuscus Günther. Mémoires du Muséum National d’Histoire Naturelle 206, 45–68.

Sadlier, RA, Bauer, AM, Wood, PL, Smith, SA, Whitaker, AH, Jourdan, H, and Jackman, T (2014c). Localized endemism in the southern ultramafic bio-region of New Caledonia as evidenced by the lizards in the genus Sigaloseps (Reptilia: Scincidae), with descriptions of four new species. Mémoires du Muséum National d’Histoire Naturelle 206, 79–113.

Sadlier, RA, Debar, L, Chavis, M, Bauer, AM, Jourdan, H, and Jackman, TR (2019). Epibator insularis, a new species of scincid lizard from l’Ⓘle Walpole, New Caledonia. Pacific Science 73, 143–161.
Epibator insularis, a new species of scincid lizard from l’Ⓘle Walpole, New Caledonia.Crossref | GoogleScholarGoogle Scholar |

Shea GM (2017) A new species of Sphenomorphus (Squamata: Scincidae) from the Doberai Peninsula of New Guinea, with a redescription of Sphenomorphus consobrinus (Peters et Doria, 1878). In ‘Biodiversity, biogeography and nature conservation in Wallacea and New Guinea’. (Eds D Telnov, MVL Barclay, OSG Pauwels) pp. 35–48. (The Entomological Society of Latvia: Rīga)

Shea, GM (2021). Nomenclature of supra-generic units within the Family Scincidae (Squamata). Zootaxa 5067, 301–351.
Nomenclature of supra-generic units within the Family Scincidae (Squamata).Crossref | GoogleScholarGoogle Scholar |

Shea GM, Allison A (2021) A new species of Sphenomorphus (Squamata: Scincidae) from Mount Kaindi, Morobe Province, Papua New Guinea. In ‘Biodiversity, biogeography and nature conservation in Wallacea and New Guinea’. (Eds D Telnov, MVL Barclay, OSG Pauwels) pp. 49–60. (The Entomological Society of Latvia: Rīga)

Shearman, PL, Ash, J, Mackey, B, Bryan, JE, and Lokes, B (2009). Forest conversion and degradation in Papua New Guinea 1972–2002. Biotropica 41, 379–390.
Forest conversion and degradation in Papua New Guinea 1972–2002.Crossref | GoogleScholarGoogle Scholar |

Simpson, GG (1977). Too many lines: the limits of the Oriental and Australian zoogeographic regions. Proceedings of the American Philosophical Society 121, 107–120.

Slavenko, A, Tallowin, OJS, Itescu, Y, Raia, P, and Meiri, S (2016). Late Quaternary reptile extinctions: size matters, insularity dominates. Global Ecology and Biogeography 25, 1308–1320.
Late Quaternary reptile extinctions: size matters, insularity dominates.Crossref | GoogleScholarGoogle Scholar |

Slavenko, A, Tamar, K, Tallowin, OJS, Allison, A, Kraus, F, Carranza, S, and Meiri, S (2020). Cryptic diversity and non-adaptive radiation of montane New Guinea skinks (Papuascincus; Scincidae). Molecular Phylogenetics and Evolution 146, .
Cryptic diversity and non-adaptive radiation of montane New Guinea skinks (Papuascincus; Scincidae).Crossref | GoogleScholarGoogle Scholar |

Slavenko, A, Allison, A, and Meiri, S (2021). Elevation is a stronger predictor of morphological trait divergence than competition in a radiation of tropical lizards. Journal of Animal Ecology 90, 917–930.
Elevation is a stronger predictor of morphological trait divergence than competition in a radiation of tropical lizards.Crossref | GoogleScholarGoogle Scholar |

Slavenko, A, Tamar, K, Tallowin, OJS, Kraus, F, Allison, A, Carranza, S, and Meiri, S (2022). Revision of the montane New Guinean skink genus Lobulia (Squamata: Scincidae), with the description of four new genera and nine new species. Zoological Journal of the Linnean Society 195, 220–278.
Revision of the montane New Guinean skink genus Lobulia (Squamata: Scincidae), with the description of four new genera and nine new species.Crossref | GoogleScholarGoogle Scholar |

Smith, SA, Sadlier, RA, Bauer, AM, Austin, CC, and Jackman, T (2007). Molecular phylogeny of the scincid lizards of New Caledonia and adjacent areas: evidence for a single origin of the endemic skinks of Tasmantis. Molecular Phylogenetics and Evolution 43, 1151–1166.
Molecular phylogeny of the scincid lizards of New Caledonia and adjacent areas: evidence for a single origin of the endemic skinks of Tasmantis.Crossref | GoogleScholarGoogle Scholar |

Smith, MJ, Cogger, H, Tiernan, B, Maple, D, Boland, C, Napier, F, Detto, T, and Smith, P (2012). An oceanic island reptile community under threat: the decline of reptiles on Christmas Island, Indian Ocean. Herpetological Conservation and Biology 7, 206–218.

Soulé, ME (1985). What is conservation biology? BioScience 35, 727–734.
What is conservation biology?Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar |

Stattersfield AJ, Crosby MJ, Long AJ, Wege DC (1998) ‘Endemic bird areas of the World.’ (BirdLife International: Cambridge)

Steadman, DW (1995). Prehistoric extinctions of Pacific island birds: biodiversity meets zooarchaeology. Science 267, 1123–1131.
Prehistoric extinctions of Pacific island birds: biodiversity meets zooarchaeology.Crossref | GoogleScholarGoogle Scholar |

Tamura, K, Stecher, G, and Kumar, S (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38, 3022–3027.
MEGA11: molecular evolutionary genetics analysis version 11.Crossref | GoogleScholarGoogle Scholar |

Tan, HH (2016). Commensal herpetofauna at Tufi Resort, Oro Province, Papua New Guinea. Southeast Asia Vertebrate Records 2016, 127–128.

Tingley, R, Meiri, S, and Chapple, DG (2016). Addressing knowledge gaps in reptile conservation. Biological Conservation 204, 1–5.
Addressing knowledge gaps in reptile conservation.Crossref | GoogleScholarGoogle Scholar |

Toussaint, EFA, Hall, R, Monaghan, MT, Sagata, K, Ibalim, S, Shaverdo, HV, Vogler, AP, Pons, J, and Balke, M (2014). The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nature Communications 5, .
The towering orogeny of New Guinea as a trigger for arthropod megadiversity.Crossref | GoogleScholarGoogle Scholar |

Trifinopoulos, J, Nguyen, L-T, von Haeseler, A, and Minh, BQ (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, W232–W235.
W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis.Crossref | GoogleScholarGoogle Scholar |

Uetz P, Freed P, Aguilar R, Hošek J (2021) The reptile database. Available at http://www.reptile-database.org

Vogt, T (1932). Beitrag zur Reptilienfauna der ehemaligen Kolonie Deutsch-Neuguinea. Sitzungsberichte der Gesellschaft naturforschender Freunde zu Berlin 1932, 281–294.

Wairiu, M (2007). History of the forestry industry in Solomon Islands. The Journal of Pacific History 42, 233–246.
History of the forestry industry in Solomon Islands.Crossref | GoogleScholarGoogle Scholar |

Wallace, AR (1860). On the zoological geography of the Malay archipelago. Journal of the Proceedings of the Linnean Society 4, 172–184.
On the zoological geography of the Malay archipelago.Crossref | GoogleScholarGoogle Scholar |

Williams, EE, and Peterson, JA (1982). Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215, 1509–1511.
Convergent and alternative designs in the digital adhesive pads of scincid lizards.Crossref | GoogleScholarGoogle Scholar |

Winter, DJ (2017). rentrez: an R package for the NCBI eUtils API. The R Journal 9, 520–526.
rentrez: an R package for the NCBI eUtils API.Crossref | GoogleScholarGoogle Scholar |

Zippel, KC, Glor, RE, and Bertram, JEA (1999). On caudal prehensility and phylogenetic constraint in lizards: the influence of ancestral anatomy on function in Corucia and Furcifer. Journal of Morphology 239, 143–155.
On caudal prehensility and phylogenetic constraint in lizards: the influence of ancestral anatomy on function in Corucia and Furcifer.Crossref | GoogleScholarGoogle Scholar |

Zug, GR (2004). Systematics of the Carliafusca’ lizards (Squamata: Scincidae) of New Guinea and nearby islands. Bishop Museum Bulletin in Zoology 5, 1–83.

Zweifel, RG (1966). A new lizard of the genus Tribolonotus (Scincidae) from New Britain. American Museum Novitates 2264, 1–12.