Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE

Using the scientific listing process to better understand climate change risk to threatened species and ecological communities in New South Wales

Claire A. Laws https://orcid.org/0000-0002-2763-0438 A B , Nola Hancock A and Michelle R. Leishman A
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, Macquarie University, NSW 2109, Australia.

B Corresponding author. Email: claire.laws@mq.edu.au

Pacific Conservation Biology 26(2) 173-181 https://doi.org/10.1071/PC19021
Submitted: 6 May 2019  Accepted: 26 August 2019   Published: 1 October 2019

Abstract

Anthropogenic climate change presents a major threat to all levels of biodiversity – from populations to ecosystems. Threatened species and ecological communities are particularly at risk because they generally possess characteristics that increase their vulnerability to extinction. Here we review the conservation assessments of 414 threatened species and 108 ecological communities in the state of New South Wales (NSW) Australia, to explore climate change extinction risk. We found only 13% of threatened species and 24% of threatened ecological communities have climate change identified as a threat. Amphibians had the highest proportion of species with a climate change threat identified (37%), followed by mammals (25%), birds (17%), reptiles (15%) and plants (10%). The sample sizes of freshwater algae and marine mammals were too small to be considered. Threatened species and ecological communities that had climate change listed as a threat were predominately associated with wet and montane habitats, highlighting the vulnerability of these environments. The estimates of the extinction threat from climate change to species and ecological communities in NSW are likely to be highly conservative. We suggest that climate change adaptation strategies be incorporated into all levels of biodiversity management, from threatened species management plans to landscape level management.

Additional keywords: adaptation, conservation planning, endangered, extinction, risk assessment.


References

Adam, P. (2009). Going with the flow? Threatened species management and legislation in the face of climate change. Ecological Management & Restoration 10, S44–S52.
Going with the flow? Threatened species management and legislation in the face of climate change.Crossref | GoogleScholarGoogle Scholar |

Akçakaya, H. R., Butchart, S. H. M., Watson, J. E. M., and Pearson, R. G. (2014). Preventing species extinctions resulting from climate change Nature Climate Change 4, 1048–1049.
Preventing species extinctions resulting from climate changeCrossref | GoogleScholarGoogle Scholar |

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters 15, 365–377.
Impacts of climate change on the future of biodiversity.Crossref | GoogleScholarGoogle Scholar | 22257223PubMed |

Bernazzani, P., Bradley, B., and Opperman, J. (2012). Integrating climate change into habitat conservation plans under the US Endangered Species Act. Environmental Management 49, 1103–1114.
Integrating climate change into habitat conservation plans under the US Endangered Species Act.Crossref | GoogleScholarGoogle Scholar | 22535183PubMed |

Cabrelli, A., Stow, A., and Hughes, L. (2014). A framework for assessing the vulnerability of species to climate change: a case study of the Australian elapid snakes. Biodiversity and Conservation 23, 3019–3034.
A framework for assessing the vulnerability of species to climate change: a case study of the Australian elapid snakes.Crossref | GoogleScholarGoogle Scholar |

Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., Hua, X., Karanewsky, C. J., Ryu, H. Y., Sbeglia, G. C., Spagnolo, F., Waldron, J. B., Warsi, O., and Wiens, J. J. (2013). How does climate change cause extinction? Proceedings of the Royal Society B 280, .
How does climate change cause extinction?Crossref | GoogleScholarGoogle Scholar | 23075836PubMed |

Caplat, P., Cheptou, P. O., Diez, J., Guisan, A., Larson, B. M. H., Macdougall, A. S., Peltzer, D. A., Richardson, D. M., Shea, K., van Kleunen, M., Zhang, R., and Buckley, Y. M. (2013). Movement, impacts and management of plant distributions in response to climate change: insights from invasions. Oikos 122, 1265–1274.
Movement, impacts and management of plant distributions in response to climate change: insights from invasions.Crossref | GoogleScholarGoogle Scholar |

Carvalho, S. B., Brito, J. C., Crespo, E. J., and Possingham, H. P. (2010). From climate change predictions to actions – conserving vulnerable animal groups in hotspots at a regional scale. Global Change Biology 16, 3257–3270.
From climate change predictions to actions – conserving vulnerable animal groups in hotspots at a regional scale.Crossref | GoogleScholarGoogle Scholar |

Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., and Mace, G. M. (2011). Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58.
Beyond predictions: biodiversity conservation in a changing climate.Crossref | GoogleScholarGoogle Scholar | 21454781PubMed |

Ducatez, S., and Shine, R. (2017). Drivers of extinction risk in terrestrial vertebrates. Conservation Letters 10, 186–194.
Drivers of extinction risk in terrestrial vertebrates.Crossref | GoogleScholarGoogle Scholar |

Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., Willner, W., Plutzar, C., Leitner, M., Mang, T., Caccianiga, M., Dirnbock, T., Ertl, S., Fischer, A., Lenoir, J., Svenning, J.-C., Psomas, A., Schmatz, D. R., Silc, U., Vittoz, P., and Hulber, K. (2012). Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change 2, 619–622.
Extinction debt of high-mountain plants under twenty-first-century climate change.Crossref | GoogleScholarGoogle Scholar |

Foden, W. B., Mace, G. M., Vié, J.-C., Angulo, A., Butchart, S. H. M., DeVantier, L. M., Dublin, H. T., Gutsche, A., Stuart, S. N., and Turak, E. (2009) Species susceptibility to climate change impacts. In ‘Wildlife in a changing world – an analysis of the 2008 IUCN Red List of Threatened Species’. (Eds JC Vié, C. Hilton-Taylor, and S. N. Stuart.) pp. 1–13. (IUCN: Gland, Switzerland.)

Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vié, J.-C., Akçakaya, H. R., Angulo, A., DeVantier, L. M., Gutsche, A., Turak, E., Cao, L., Donner, S. D., Katariya, V., Bernard, R., Holland, R. A., Hughes, A. F., O’Hanlon, S. E., Garnett, S. T., Şekercioğlu, Ç. H., and Mace, G. M. (2013). Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427.
Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.Crossref | GoogleScholarGoogle Scholar | 23950785PubMed |

Frankham, R., Ballou, J. D., Ralls, K., Eldridge, M., Dudash, M. R., Fenster, C. B., Lacy, R. C., Sunnucks, P. (2017) ‘Genetic management of fragmented animal and plant populations.’ (Oxford University Press: Oxford, UK.)

Hoegh-Guldberg, O., Hughes, L., McIntyre, S., Lindenmayer, D. B., Parmesan, C., Possingham, H. P., and Thomas, C. D. (2008). Ecology: assisted colonization and rapid climate change. Science 321, 345–346.
Ecology: assisted colonization and rapid climate change.Crossref | GoogleScholarGoogle Scholar | 18635780PubMed |

Hoeppner, J. M., and Hughes, L. (2019). Climate readiness of recovery plans for threatened Australian species. Conservation Biology 33, 534–542.
Climate readiness of recovery plans for threatened Australian species.Crossref | GoogleScholarGoogle Scholar | 30570177PubMed |

Hoffmann, A. A., and Sgró, C. M. (2011). Climate change and evolutionary adaptation. Nature 470, 479–485.
Climate change and evolutionary adaptation.Crossref | GoogleScholarGoogle Scholar | 21350480PubMed |

Hughes, L. (2000). Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution 15, 56–61.
Biological consequences of global warming: is the signal already apparent?Crossref | GoogleScholarGoogle Scholar |

Hughes, L. (2011). Climate change and Australia: key vulnerable regions. Regional Environmental Change 11, 189–195.
Climate change and Australia: key vulnerable regions.Crossref | GoogleScholarGoogle Scholar |

IUCN (2012) ‘IUCN Red List categories and criteria. Ver. 3.1.’ 2nd edn. (IUCN: Gland, Switzerland.)

IUCN (2016) ‘Guidelines for using the IUCN Red List categories and Criteria. Ver. 12.’ (IUCN: Gland, Switzerland.)

Laurance, W. F., Dell, B., Turton, S. M., Lawes, M. J., Hutley, L. B., McCallum, H., Dale, P., Bird, M., Hardy, G., Prideaux, G., Gawne, B., McMahon, C. R., Yu, R., Hero, J.-M., Schwarzkopf, L., Krockenberger, A., Douglas, M., Silvester, E., Mahony, M., Vella, K., Saikia, U., Wahren, C.-H., Xu, Z., Smith, B., and Cocklin, C. (2011). The 10 Australian ecosystems most vulnerable to tipping points. Biological Conservation 144, 1472–1480.
The 10 Australian ecosystems most vulnerable to tipping points.Crossref | GoogleScholarGoogle Scholar |

Lawler, J. J. (2009). Climate change adaptation strategies for resource management and conservation planning. Annals of the New York Academy of Sciences 1162, 79–98.
Climate change adaptation strategies for resource management and conservation planning.Crossref | GoogleScholarGoogle Scholar | 19432646PubMed |

Lee, J. R., Maggini, R., Taylor, M. F. J., and Fuller, R. A. (2015). Mapping the drivers of climate change vulnerability for Australia’s threatened species. PLoS One 10, e0124766.
Mapping the drivers of climate change vulnerability for Australia’s threatened species.Crossref | GoogleScholarGoogle Scholar | 26017785PubMed |

Li, J., Wang, M.-H., and Ho, Y.-S. (2011). Trends in research on global climate change: a science citation index expanded-based analysis. Global and Planetary Change 77, 13–20.
Trends in research on global climate change: a science citation index expanded-based analysis.Crossref | GoogleScholarGoogle Scholar |

Mawdsley, J. R., O’Malley, R., and Ojima, D. S. (2009). A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology 23, 1080–1089.
A review of climate-change adaptation strategies for wildlife management and biodiversity conservation.Crossref | GoogleScholarGoogle Scholar | 19549219PubMed |

McCarty, J. P. (2001). Ecological consequences of recent climate change. Conservation Biology 15, 320–331.
Ecological consequences of recent climate change.Crossref | GoogleScholarGoogle Scholar |

Moritz, C., and Agudo, R. (2013). The future of species under climate change: resilience or decline? Science 341, 504–508.
The future of species under climate change: resilience or decline?Crossref | GoogleScholarGoogle Scholar | 23908228PubMed |

Natural Resource Management Ministerial Council (NRMMC) (2010) Australia's Biodiversity Conservation Strategy 2010–2030, Australian Government, Department of Sustainability, Environment, Water, Population and Communities. Canberra. Available at: http://www.environment.gov.au/system/files/resources/58321950-f8b6-4ef3-bb68-6f892420d601/files/biodiversity-strategy-2010.pdf [verified 21 September 2019]

Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E., Butchart, S. H., Kovacs, K. M., Scheffers, B. R., Hole, D. G., Martin, T. G., and Akçakaya, H. R. (2015). Assessing species vulnerability to climate change. Nature Climate Change 5, 215–224.
Assessing species vulnerability to climate change.Crossref | GoogleScholarGoogle Scholar |

Pauls, S. U., Nowak, C., Bálint, M., and Pfenninger, M. (2013). The impact of global climate change on genetic diversity within populations and species. Molecular Ecology 22, 925–946.
The impact of global climate change on genetic diversity within populations and species.Crossref | GoogleScholarGoogle Scholar | 23279006PubMed |

Pearson, R. G., Stanton, J. C., Shoemaker, K. T., Aiello-Lammens, M. E., Ersts, P. J., Horning, N., Fordham, D. A., Raxworthy, C. J., Ryu, H. Y., McNees, J., and Akçakaya, H. R. (2014). Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change 4, 217–221.
Life history and spatial traits predict extinction risk due to climate change.Crossref | GoogleScholarGoogle Scholar |

Prober, S. M., Doerr, V.A.J., Broadhurst, L. M., Williams, K. J., and Dickson, F. (2019). Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecological Monographs 89, e01333.
Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change.Crossref | GoogleScholarGoogle Scholar |

Reside, A. E., Butt, N., and Adams, V.M (2018). Adapting systematic conservation planning for climate change. Biodiversity and Conservation 27, 1–29.
Adapting systematic conservation planning for climate change.Crossref | GoogleScholarGoogle Scholar |

Scheffers, B. R., De Meester, L., Bridge, T.C.L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., Butchart, S.H.M., Pearce-Kelly, P., Kovacs, K. M., Dudgeon, D., Pacifici, M., Rondinini, C., Foden, W. B., Martin, T. G., Mora, C., Bickford, D., and Watson, J.E.M. (2016). The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671.
The broad footprint of climate change from genes to biomes to people.Crossref | GoogleScholarGoogle Scholar | 27846577PubMed |

Silcock, J. L., and Fensham, R. J. (2018). Using evidence of decline and extinction risk to identify priority regions, habitats and threats for plant conservation in Australia. Australian Journal of Botany 66, 541–555.
Using evidence of decline and extinction risk to identify priority regions, habitats and threats for plant conservation in Australia.Crossref | GoogleScholarGoogle Scholar |

Stewart, B. A., Ford, B. M., Van Helden, B. E., Roberts, J. D., Close, P. G., and Speldewinde, P. C. (2018). Incorporating climate change into recovery planning for threatened vertebrate species in southwestern Australia. Biodiversity and Conservation 27, 147–165.
Incorporating climate change into recovery planning for threatened vertebrate species in southwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Thackeray, S. J., Sparks, T. H., Frederiksen, M., Burthe, S., Bacon, P. J., Bell, J. R., Botham, M. S., Brereton, T. M., Bright, P. W., Carvalho, L., Clutton-Brock, T. I. M., Dawson, A., Edwards, M., Elliott, J. M., Harrington, R., Johns, D., Jones, I. D., Jones, J. T., Leech, D. I., Roy, D. B., Scott, W. A., Smith, M., Smithers, R. J., Winfield, I. J., and Wanless, S. (2010). Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology 16, 3304–3313.
Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments.Crossref | GoogleScholarGoogle Scholar |

Thomas, C. D. (2011). Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends in Ecology & Evolution 26, 216–221.
Translocation of species, climate change, and the end of trying to recreate past ecological communities.Crossref | GoogleScholarGoogle Scholar |

Urban, M. C. (2015). Accelerating extinction risk from climate change. Science 348, 571–573.
Accelerating extinction risk from climate change.Crossref | GoogleScholarGoogle Scholar | 25931559PubMed |

Waller, N. L., Gynther, I. C., Freeman, A. B., Lavery, T. H., and Leung, L. K.-P. (2017). The bramble cay melomys Melomys rubicola (Rodentia: Muridae): a first mammalian extinction caused by human-induced climate change? Wildlife Research 44, 9–21.
The bramble cay melomys Melomys rubicola (Rodentia: Muridae): a first mammalian extinction caused by human-induced climate change?Crossref | GoogleScholarGoogle Scholar |

Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416, 389–395.
Ecological responses to recent climate change.Crossref | GoogleScholarGoogle Scholar | 11919621PubMed |

Westoby, M., and Burgman, M. (2006). Climate change as a threatening process. Austral Ecology 31, 549–550.
Climate change as a threatening process.Crossref | GoogleScholarGoogle Scholar |

Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A., and Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6, e325.
Towards an integrated framework for assessing the vulnerability of species to climate change.Crossref | GoogleScholarGoogle Scholar | 19108608PubMed |

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences of the United States of America 112, 4531–4540.
Ongoing unraveling of a continental fauna decline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar |